1
|
Schwarz MGA, Corrêa PR, Mendonça-Lima L. Transcriptional Profiling of Homologous Recombination Pathway Genes in Mycobacterium bovis BCG Moreau. Microorganisms 2023; 11:2534. [PMID: 37894192 PMCID: PMC10609372 DOI: 10.3390/microorganisms11102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (P.R.C.); (L.M.-L.)
| | | | | |
Collapse
|
2
|
Dellagostin OA, Borsuk S, Oliveira TL, Seixas FK. Auxotrophic Mycobacterium bovis BCG: Updates and Perspectives. Vaccines (Basel) 2022; 10:802. [PMID: 35632558 PMCID: PMC9146772 DOI: 10.3390/vaccines10050802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium bovis BCG has been used for a century as the only licensed vaccine against tuberculosis. Owing to its strong adjuvant properties, BCG has also been employed as an oncological immunotherapeutic as well as a live vaccine vector against other pathogens. However, BCG vaccination has limited efficacy in protecting against adult forms of tuberculosis (TB), raises concerns about its safety in immunocompromised populations, compromises the diagnosis of TB through the tuberculin test and lacks predictability for successful antigen expression and immune responses to heterologous antigens. Together, these factors propelled the construction and evaluation of auxotrophic BCG strains. Auxotrophs of BCG have been developed from mutations in the genes required for their growth using different approaches and have shown the potential to provide a model to study M. tuberculosis, a more stable, safe, and effective alternative to BCG and a vector for the development of recombinant live vaccines, especially against HIV infection. In this review, we provide an overview of the strategies for developing and using the auxotrophic BCG strains in different scenarios.
Collapse
Affiliation(s)
- Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil; (S.B.); (T.L.O.); (F.K.S.)
| | | | | | | |
Collapse
|
3
|
Martinot AJ, Blass E, Yu J, Aid M, Mahrokhian SH, Cohen SB, Plumlee CR, Larocca RA, Siddiqi N, Wakabayashi S, Gardner M, Audette R, Devorak A, Urdahl KB, Rubin EJ, Barouch DH. Protective efficacy of an attenuated Mtb ΔLprG vaccine in mice. PLoS Pathog 2020; 16:e1009096. [PMID: 33315936 PMCID: PMC7769599 DOI: 10.1371/journal.ppat.1009096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/28/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Bacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice. In C3HeB/FeJ mice, ΔLprG vaccination resulted in innate peripheral cytokine production and induced high polyclonal PPD-specific cytokine-secreting CD4+ T lymphocytes in peripheral blood. The ΔLprG vaccine afforded protective efficacy in the lungs of C3H/FeJ mice following both H37Rv and Erdman aerosolized Mtb challenges. Vaccine efficacy correlated with antigen-specific PD-1-negative CD4+ T lymphocytes as well as with serum IL-17 levels after vaccination. We hypothesize that induction of Th17 cells in lung is critical for vaccine protection, and we show a serum cytokine biomarker for IL-17 shortly after vaccination may predict protective efficacy. Many successful vaccines are based on attenuated human pathogens. The only licensed tuberculosis vaccine, BCG, is based on an attenuated version of live whole cell Mycobacterium bovis, the causative agent of tuberculosis (TB) in cattle. Advantages to using attenuated pathogens as vaccines include a broad antigen composition including proteins, lipids, carbohydrates and other molecules that can induce durable immune responses sometimes lasting decades. Here we test an attenuated Mycobacterium tuberculosis (Mtb), the causative agent of human TB, that lacks a key virulence factor as an alternative whole cell vaccine in mice. Attenuated Mtb lacking a key virulence protein, LprG, is immunogenic and protects mice against Mtb challenge. The LprG whole cell vaccine is protective in mice that develop lung pathology more similar to what is described in human TB and the LprG vaccine induces a key cytokine, IL-17, thought to be important for vaccine protection, in the peripheral blood early after vaccination. Together these data support the continued development of attenuated TB as a potential vaccine candidate. Furthermore our data suggests that serum IL-17 should be explored as a potential biomarker for vaccine efficacy in preclinical animal models.
Collapse
Affiliation(s)
- Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shant H. Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara B. Cohen
- Department of Immunology, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Courtney R. Plumlee
- Department of Immunology, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Rafael A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Noman Siddiqi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Shoko Wakabayashi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Michelle Gardner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rebecca Audette
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Anne Devorak
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Kevin B. Urdahl
- Department of Immunology, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
A standardized BioBrick toolbox for the assembly of sequences in mycobacteria. Tuberculosis (Edinb) 2019; 119:101851. [DOI: 10.1016/j.tube.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
|
5
|
Kilpeläinen A, Saubi N, Guitart N, Olvera A, Hanke T, Brander C, Joseph J. Recombinant BCG Expressing HTI Prime and Recombinant ChAdOx1 Boost Is Safe and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Vaccines (Basel) 2019; 7:E78. [PMID: 31382453 PMCID: PMC6789536 DOI: 10.3390/vaccines7030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of anti-retroviral therapy, HIV-1 infection remains a massive burden on healthcare systems. Bacillus Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis, confers protection against meningitis and miliary tuberculosis in infants. Recombinant BCG has been used as a vaccine vehicle to express both HIV-1 and Simian Immunodeficiemcy Virus (SIV) immunogens. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HTI.int, expressing the HIVACAT T-cell immunogen (HTI). The plasmid was transformed into a lysine auxotrophic Mycobacterium bovis BCG strain (BCGΔLys) to generate the vaccine BCG.HTI2auxo.int. The DNA sequence coding for the HTI immunogen and HTI protein expression were confirmed, and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that the vaccine was stable in vitro for 35 bacterial generations, and that when delivered in combination with chimpanzee adenovirus (ChAd)Ox1.HTI in adult BALB/c mice, it was well tolerated and induced HIV-1-specific T-cell responses. Specifically, priming with BCG.HTI2auxo.int doubled the magnitude of the T-cell response in comparison with ChAdOx1.HTI alone while maintaining its breadth. The use of integrative expression vectors and novel HIV-1 immunogens can aid in improving mycobacterial vaccine stability as well as specific immunogenicity. This vaccine candidate may be a useful tool in the development of an effective vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Narcís Saubi
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Núria Guitart
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
| | - Alex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Tomáš Hanke
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
- AELIX Therapeutics, 08028 Barcelona, Catalonia, Spain
| | - Joan Joseph
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain.
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Kilpeläinen A, Saubi N, Guitart N, Moyo N, Wee EG, Ravi K, Hanke T, Joseph J. Priming With Recombinant BCG Expressing Novel HIV-1 Conserved Mosaic Immunogens and Boosting With Recombinant ChAdOx1 Is Safe, Stable, and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Front Immunol 2019; 10:923. [PMID: 31156614 PMCID: PMC6530512 DOI: 10.3389/fimmu.2019.00923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
BCG is currently the only licensed vaccine against tuberculosis (TB) and confers protection against meningitis and miliary tuberculosis in infants, although pulmonary disease protection in adults is inconsistent. Recently, promising HIV-1 immunogens were developed, such as the T-cell immunogens "tHIVconsvX," designed using functionally conserved protein regions across group M strains, with mosaic immunogens to improve HIV-1 variant match and response breadth. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVconsvXint, expressing the immunogens HIVconsv1&2. This expression vector used an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate vaccines BCG.HIVconsv12auxo.int and BCG.HIVconsv22auxo.int. The DNA sequence coding for the HIVconsv1&2 immunogens and protein expression were confirmed and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that BCG.HIVconsv1&22auxo.int in combination with ChAdOx1.tHIVconsv5&6 were well tolerated and induced HIV-1-specific T-cell responses in adult BALB/c mice. In addition, we showed that the BCG.HIVconsv1&22auxo.int vaccine strains were stable in vitro after 35 bacterial generations and in vivo 7 weeks after inoculation. The use of integrative expression vectors and novel HIV-1 immunogens are likely to have improved the mycobacterial vaccine stability and specific immunogenicity and may enable the development of a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Narcís Saubi
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Núria Guitart
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Nathifa Moyo
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Edmund G. Wee
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Krupa Ravi
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Joan Joseph
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| |
Collapse
|
7
|
Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019; 37:3400-3408. [PMID: 30979571 DOI: 10.1016/j.vaccine.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Abstract
In the past when large investments have been made in tackling narrow scientific challenges, the enormous expansion in our knowledge in one small area has had a spill-over effect on research and treatment of other diseases. The large investment in HIV vaccine development in recent years has the potential for such an effect on vaccine development for other diseases. HIV vaccine developers have experienced repeated failure using the standard approaches to vaccine development. This has forced them to consider immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immunity. It has advanced the development of many novel vaccine vectors and vehicles that are now available for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms and community engagement on vaccine development. These developments and considerations have implications for vaccinology more generally. Some suggestions are made for investigators working on other "hard-to-develop" vaccines.
Collapse
|
8
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
9
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
10
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
11
|
Rizzi C, Peiter AC, Oliveira TL, Seixas ACP, Leal KS, Hartwig DD, Seixas FK, Borsuk S, Dellagostin OA. Stable expression of Mycobacterium bovis antigen 85B in auxotrophic M. bovis bacillus Calmette-Guérin. Mem Inst Oswaldo Cruz 2017; 112:123-130. [PMID: 28177046 PMCID: PMC5293121 DOI: 10.1590/0074-02760160360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium
bovis, responsible for causing major losses in livestock. A cost
effective alternative to control the disease could be herd vaccination. The
bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB,
but can improved by over-expression of protective antigens. The M.
bovis antigen 85B demonstrates ability to induce protective immune
response against bovine TB in animal models. However, current systems for the
construction of recombinant BCG expressing multiple copies of the gene result in
strains of low genetic stability that rapidly lose the plasmid in vivo. Employing
antibiotic resistance as selective markers, these systems also compromise vaccine
safety. We previously reported the construction of a stable BCG expression system
using auxotrophic complementation as a selectable marker. OBJECTIVES The fundamental aim of this study was to construct strains of M.
bovis BCG Pasteur and the auxotrophic M. bovis BCG
ΔleuD expressing Ag85B and determine their stability in
vivo. METHODS Employing the auxotrophic system, we constructed rBCG strains that expressed
M. bovis Ag85B and compared their stability with a
conventional BCG strain in mice. Stability was measured in terms of bacterial
growth on the selective medium and retention of antigen expression. FINDINGS The auxotrophic complementation system was highly stable after 18 weeks, even
during in vivo growth, as the selective pressure and expression of antigen were
maintained comparing to the conventional vector. MAIN CONCLUSION The Ag85B continuous expression within the host may generate a stronger and
long-lasting immune response compared to conventional systems.
Collapse
Affiliation(s)
- Caroline Rizzi
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Ana Carolina Peiter
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Thaís Larré Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Amilton Clair Pinto Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Karen Silva Leal
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Daiane Drawanz Hartwig
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil.,Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, RS, Brasil
| | - Fabiana Kommling Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Sibele Borsuk
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Odir Antônio Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| |
Collapse
|
12
|
Mahant A, Saubi N, Eto Y, Guitart N, Gatell JM, Hanke T, Joseph J. Preclinical development of BCG.HIVA 2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother 2017; 13:1798-1810. [PMID: 28426273 PMCID: PMC5557246 DOI: 10.1080/21645515.2017.1316911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Aakash Mahant
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Narcís Saubi
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Yoshiki Eto
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Núria Guitart
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Josep Ma Gatell
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Tomáš Hanke
- b The Jenner Institute , University of Oxford , Oxford , UK
| | - Joan Joseph
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| |
Collapse
|
13
|
Hart BE, Lee S. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy. PLoS Negl Trop Dis 2016; 10:e0005229. [PMID: 27941982 PMCID: PMC5179062 DOI: 10.1371/journal.pntd.0005229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/22/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022] Open
Abstract
Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine. Mycobacterium ulcerans (MU) infection causes a highly disfiguring, necrotic skin disease known as Buruli ulcer (BU). Antibiotic treatments have low efficacy if the infection is diagnosed after ulceration begins, leading to frequent dependence on surgical removal of infected tissues. A prophylactic vaccine for BU does not exist and several attempts to create an effective vaccine have shown limited success. We recently demonstrated that a recombinant strain of M. bovis BCG expressing the immunodominant MU-Ag85A conferred significantly enhanced protection against experimental BU compared to the standard BCG vaccine. Here we show that BCG expression of a fusion between two alternative MU antigens, Ag85B and EsxH, can promote antigen-specific T cell and humoral immune response capable of significantly improving survival and protection against BU pathology, compared to BCG MU-Ag85A alone. These results support the potential for using the highly safe and ubiquitous BCG vaccine as a platform for further BU vaccine development.
Collapse
Affiliation(s)
- Bryan E. Hart
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunhee Lee
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hart BE, Hale LP, Lee S. Immunogenicity and protection conferred by a recombinant Mycobacterium marinum vaccine against Buruli ulcer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ng TW, Saavedra-Ávila NA, Kennedy SC, Carreño LJ, Porcelli SA. Current efforts and future prospects in the development of live mycobacteria as vaccines. Expert Rev Vaccines 2015; 14:1493-507. [PMID: 26366616 DOI: 10.1586/14760584.2015.1089175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that have been designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of the current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers.
Collapse
Affiliation(s)
- Tony W Ng
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Noemí A Saavedra-Ávila
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Kennedy
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Leandro J Carreño
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,b 2 Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steven A Porcelli
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|