1
|
Lu Z, Paolella BR, Truex NL, Loftis AR, Liao X, Rabideau AE, Brown MS, Busanovich J, Beroukhim R, Pentelute BL. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chem Biol 2020; 15:1358-1369. [PMID: 32348107 PMCID: PMC7521945 DOI: 10.1021/acschembio.9b01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisense oligonucleotide therapies are important cancer treatments, which can suppress genes in cancer cells that are critical for cell survival. SF3B1 has recently emerged as a promising gene target that encodes a key splicing factor in the SF3B protein complex. Over 10% of cancers have lost one or more copies of the SF3B1 gene, rendering these cancers vulnerable after further suppression. SF3B1 is just one example of a CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) gene, but over 120 additional candidate CYCLOPS genes are known. Antisense oligonucleotide therapies for cancer offer the promise of effective suppression for CYCLOPS genes, but developing these treatments is difficult due to their limited permeability into cells and poor cytosolic stability. Here, we develop an effective approach to suppress CYCLOPS genes by delivering antisense peptide nucleic acids (PNAs) into the cytosol of cancer cells. We achieve efficient cytosolic PNA delivery with the two main nontoxic components of the anthrax toxin: protective antigen (PA) and the 263-residue N-terminal domain of lethal factor (LFN). Sortase-mediated ligation readily enables the conjugation of PNAs to the C terminus of the LFN protein. LFN and PA work together in concert to translocate PNAs into the cytosol of mammalian cells. Antisense SF3B1 PNAs delivered with the LFN/PA system suppress the SF3B1 gene and decrease cell viability, particularly of cancer cells with partial copy-number loss of SF3B1. Moreover, antisense SF3B1 PNAs delivered with a HER2-binding PA variant selectively target cancer cells that overexpress the HER2 cell receptor, demonstrating receptor-specific targeting of cancer cells. Taken together, our efforts illustrate how PA-mediated delivery of PNAs provides an effective and general approach for delivering antisense PNA therapeutics and for targeting gene dependencies in cancer.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Brenton R. Paolella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Alexander R. Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Amy E. Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Meredith S. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - John Busanovich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Savransky V, Ionin B, Reece J. Current Status and Trends in Prophylaxis and Management of Anthrax Disease. Pathogens 2020; 9:E370. [PMID: 32408493 PMCID: PMC7281134 DOI: 10.3390/pathogens9050370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.
Collapse
Affiliation(s)
- Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA; (B.I.); (J.R.)
| | | | | |
Collapse
|
3
|
Amador-Molina JC, Valerdi-Madrigal ED, Domínguez-Castillo RI, Sirota LA, Arciniega JL. Temperature-mediated recombinant anthrax protective antigen aggregate development: Implications for toxin formation and immunogenicity. Vaccine 2016; 34:4188-4195. [PMID: 27364097 DOI: 10.1016/j.vaccine.2016.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40°C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation's impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50°C for 30min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2-7 times lower than titers elicited by native rPA. Thus, rPA's ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein's antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency.
Collapse
Affiliation(s)
- Juan C Amador-Molina
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Esther D Valerdi-Madrigal
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Rocío I Domínguez-Castillo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Lev A Sirota
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Juan L Arciniega
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
4
|
McComb RC, Martchenko M. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine. Vaccine 2015; 34:13-9. [PMID: 26611201 DOI: 10.1016/j.vaccine.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin.
Collapse
Affiliation(s)
- Ryan C McComb
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States
| | - Mikhail Martchenko
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States.
| |
Collapse
|
5
|
Lu H, Catania J, Baranji K, Feng J, Gu M, Lathey J, Sweeny D, Sanford H, Sapru K, Patamawenu T, Chen JH, Ng A, Fesseha Z, Kluepfel-Stahl S, Minang J, Alleva D. Characterization of the native form of anthrax lethal factor for use in the toxin neutralization assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:986-97. [PMID: 23637044 PMCID: PMC3697443 DOI: 10.1128/cvi.00046-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
Abstract
The cell-based anthrax toxin neutralization assay (TNA) is used to determine functional antibody titers of sera from animals and humans immunized with anthrax vaccines. The anthrax lethal toxin is a critical reagent of the TNA composed of protective antigen (PA) and lethal factor (LF), which are neutralization targets of serum antibodies. Cytotoxic potency of recombinant LF (rLF) lots can vary substantially, causing a challenge in producing a renewable supply of this reagent for validated TNAs. To address this issue, we characterized a more potent rLF variant (rLF-A) with the exact native LF amino acid sequence that lacks the additional N-terminal histidine and methionine residues present on the commonly used form of rLF (rLF-HMA) as a consequence of the expression vector. rLF-A can be used at 4 to 6 ng/ml (in contrast to 40 ng/ml rLF-HMA) with 50 ng/ml recombinant PA (rPA) to achieve 95 to 99% cytotoxicity. In the presence of 50 ng/ml rPA, both rLF-A and rLF-HMA allowed for similar potencies (50% effective dilution) among immune sera in the TNA. rPA, but not rLF, was the dominant factor in determining potency of serum samples containing anti-PA antibodies only or an excess of anti-PA relative to anti-rLF antibodies. Such anti-PA content is reflected in immune sera derived from most anthrax vaccines in development. These results support that 7- to 10-fold less rLF-A can be used in place of rLF-HMA without changing TNA serum dilution curve parameters, thus extending the use of a single rLF lot and a consistent, renewable supply.
Collapse
Affiliation(s)
- Hang Lu
- Emergent BioSolutions, Inc., Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1465-73. [PMID: 22815152 DOI: 10.1128/cvi.00174-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies.
Collapse
|
7
|
Analysis of defined combinations of monoclonal antibodies in anthrax toxin neutralization assays and their synergistic action. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:731-9. [PMID: 22441391 DOI: 10.1128/cvi.05714-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax.
Collapse
|