1
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Immunological Evaluation of Goats Immunized with a Commercial Vaccine against Johne’s Disease. Vaccines (Basel) 2022; 10:vaccines10040518. [PMID: 35455267 PMCID: PMC9031733 DOI: 10.3390/vaccines10040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Johne’s disease affects ruminants causing an economic burden to dairy, meat and wool industries. Vaccination against Mycobacterium avium subspecies paratuberculosis (Map), which causes Johne’s disease, is a primary intervention for disease control in livestock. Previously, a comprehensive, multi-institutional vaccine trial for Johne’s disease was conducted to test the efficacy of live attenuated Map strains. Here, we report the humoral and cell-mediated immune responses from kid goats enrolled in that trial. Both vaccinated and unvaccinated animals showed IFN-γ stimulation and proliferation of T cell subpopulations on challenge with Map. CD4+, CD25+ and γδ cells from cultured PBMCs in the vaccinated goats showed significantly greater proliferation responses on stimulation with Map antigens. The increase in CD44+ and decrease in CD62L+ cells suggest that vaccine administration reduced the inflammatory responses associated with Map infection. Overall, a stronger antibody response was observed in the infected goats as compared to vaccinated goats. Two independent experimental approaches were used to identify differences in the antibody responses of vaccinated and unvaccinated goats. The first approach involved screening a phage expression library with pooled serum from infected goats, identifying previously reported Map antigens, including MAP_1272c and MAP_1569. However, three specific antigens detected only by vaccinated goats were also identified in the library screens. A second approach using dot blot analysis identified two additional differentially reacting proteins in the vaccinated goats (MAP_4106 and MAP_4141). These immunological results, combined with the microbiological and pathological findings obtained previously, provide a more complete picture of Johne’s disease control in goats vaccinated against Map.
Collapse
|
3
|
Stabel JR, Bannantine JP. Reduced tissue colonization of Mycobacterium avium subsp. paratuberculosis in neonatal calves vaccinated with a cocktail of recombinant proteins. Vaccine 2021; 39:3131-3140. [PMID: 33966908 DOI: 10.1016/j.vaccine.2021.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
An increasing prevalence of paratuberculosis supports the need for new efficacious vaccines as an essential management tool. Two separate studies were performed in neonatal calves to evaluate the effectiveness of pooled recombinant Mycobacterium avium subsp. paratuberculosis (MAP) proteins (MAP1087, MAP1204, MAP1272c, MAP2077c) as a potential vaccine. In the first study vaccinated calves were immunized with 400 µg protein cocktail per dose, whereas the second study compared doses of 400 µg and 800 µg of protein cocktail, followed by challenge with live MAP for both vaccinated and nonvaccinated control calves 28 days post-vaccination. At the end of 12 months, tissue colonization with MAP was significantly reduced for the vaccinated calves compared to control animals. A higher dose of vaccine improved protection, with further reductions of MAP burden. Antigen-specific IFN-γ responses and serum antibody responses were similar regardless of vaccination, indicating exposure to MAP invoked conventional host immune responses. Host immunity differed due to vaccination, resulting in increased percentages of CD4+ T cells and B cells after stimulation of PBMCs with antigen. Interestingly, gene expression in PBMCs was similar for both control and vaccinated calves except for significant increases in IFN-γ, IL-12, and IL-17 expression observed in vaccinated calves. Vaccination with a cocktail of immunogenic recombinant MAP proteins was efficacious in reducing the level of infection and fecal shedding of neonatal calves and may be a potential tool for curtailing the spread of Johne's disease.
Collapse
Affiliation(s)
- J R Stabel
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, United States.
| | - J P Bannantine
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, United States
| |
Collapse
|
4
|
Li L, Bannantine JP, Campo JJ, Randall A, Grohn YT, Schilling MA, Katani R, Radzio-Basu J, Easterling L, Kapur V. Identification of Sero-Diagnostic Antigens for the Early Diagnosis of Johne's Disease using MAP Protein Microarrays. Sci Rep 2019; 9:17573. [PMID: 31772281 PMCID: PMC6879513 DOI: 10.1038/s41598-019-53973-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/07/2019] [Indexed: 01/20/2023] Open
Abstract
Considerable effort has been directed toward controlling Johne’s disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E−, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E−, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E− (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E−, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E− groups, have potential utility for the early sero-diagnosis of MAP infection.
Collapse
Affiliation(s)
- Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - John P Bannantine
- National Animal Disease Center, USDA-ARS, Ames, IA, United States of America
| | - Joseph J Campo
- Antigen Discovery, Inc., Irvine, CA, United States of America
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, CA, United States of America
| | - Yrjo T Grohn
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, United States of America
| | - Megan A Schilling
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America
| | - Robab Katani
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America.,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| | - Jessica Radzio-Basu
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| | - Laurel Easterling
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America
| | - Vivek Kapur
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America. .,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America. .,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
5
|
A peptide-based vaccine for Mycobacterium avium subspecies paratuberculosis. Vaccine 2019; 37:2783-2790. [PMID: 31003915 DOI: 10.1016/j.vaccine.2019.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/26/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022]
Abstract
Recent efforts to develop a live attenuated vaccine against Mycobacterium avium subsp. paratuberculosis (Map), the causative agent of Johne's disease (JD), revealed relA is important in Map virulence. Deletion of the relA gene impairs the ability of Map to establish a persistent infection. Analysis of the basis for this observation revealed infection with a relA deletion mutant (ΔrelA) elicits development of cytotoxic CD8 T cells (CTL) with the ability to kill intracellular bacteria. Further analysis of the recall response elicited by ΔrelA vaccination showed a 35 kDa membrane peptide (MMP) is one of the targets of the immune response, suggesting it might be possible to develop a peptide-based vaccine based on MMP. To explore this possibility, ex vivo vaccination studies were conducted with MMP alone and incorporated into a nanoparticle (NP) vector comprised of poly (D, L-lactide-co-glycolide) and monophosphoryl lipid A (PLGA/MPLA). As reported, ex vivo vaccination studies showed CD8 CTL were elicited with classic and monocyte derived dendritic cells (cDC and MoDC) pulsed with MMP alone and incorporated into a PGLA/MPLA vector. Incorporation of MMP into a NP vector enhanced the ability of CD8 CTL to kill intracellular bacteria. The findings indicate incorporation of MMP into a PGLA/MPLA nanoparticle vector is one of the possible ways to develop a MMP based vaccine for Johne's disease.
Collapse
|
6
|
Membrane and Cytoplasmic Proteins of Mycobacterium avium subspecies paratuberculosis that Bind to Novel Monoclonal Antibodies. Microorganisms 2018; 6:microorganisms6040127. [PMID: 30544922 PMCID: PMC6313528 DOI: 10.3390/microorganisms6040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies against Mycobacterium avium subspecies paratuberculosis(Map) proteins are important tools in Johne’s disease research and diagnostics. Johne’s disease is a chronic inflammatory intestinal disease of cattle, sheep, and other ruminant animals. We have previously generated multiple sets of monoclonal antibodies (mAbs) in different studies; however, because many were generated and screened against a whole-cell extract of Map, the antigens that bind to these antibodies remained unknown. In this study, we used three different approaches to identify the corresponding Map antigens for 14 mAbs that could not be identified previously. In the first approach, a new Map-lambda phage expression library was screened to identify corresponding antigens for 11 mAbs. This approach revealed that mAbs 7C8, 9H3, 12E4, 3G5, and 11B8 all detect MAP_3404 encoding the biotin carboxylase subunit of acetyl-CoA carboxylase, while mAbs 7A6, 11F8, and 10C12 detect the GroEL2 chaperonin (MAP_3936), 6C9 detects electron transfer flavoprotein (MAP_3060c), and 14G11 detects MAP_3976, a lipoprotein anchoring transpeptidase. The epitopes to a selection of these mAbs were also defined. In a second approach, MAP_2698c bound monoclonal antibody (mAb) 14D4 as determined using protein arrays. When both of these approaches failed to identify the antigen for mAb 12C9, immunoprecipitation, mass spectrometry analysis, and codon optimization was used to identify the membrane protein, MAP_4145, as the reacting antigen. Characterized antibodies were used to quickly interrogate mycobacterial proteomic preps. We conclude by providing a complete catalog of available mAbs to Map proteins, along with their cognate antigens and epitopes, if known. These antibodies are now thoroughly characterized and more useful for research and diagnostic purposes.
Collapse
|
7
|
Abdellrazeq GS, Elnaggar MM, Bannantine JP, Park KT, Souza CD, Backer B, Hulubei V, Fry LM, Khaliel SA, Torky HA, Schneider DA, Davis WC. A Mycobacterium avium subsp. paratuberculosis relA deletion mutant and a 35 kDa major membrane protein elicit development of cytotoxic T lymphocytes with ability to kill intracellular bacteria. Vet Res 2018; 49:53. [PMID: 29941017 PMCID: PMC6019527 DOI: 10.1186/s13567-018-0549-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
Efforts to develop live attenuated vaccines against Mycobacterium avium subspecies paratuberculosis (Map), using indirect methods to screen Map deletion mutants for potential efficacy, have not been successful. A reduction in the capacity to survive in macrophages has not predicted the ability of mutants to survive in vivo. Previous studies for screening of three deletion mutants in cattle and goats revealed one mutant, with a deletion in relA (ΔMap/relA), could not establish a persistent infection. Further studies, using antigen presenting cells (APC), blood dendritic cells and monocyte derived DC, pulsed with ΔMap/relA or a 35 kDa Map membrane protein (MMP) revealed a component of the response to ΔMap/relA was directed towards MMP. As reported herein, we developed a bacterium viability assay and cell culture assays for analysis and evaluation of cytotoxic T cells generated against ΔMap/relA or MMP. Analysis of the effector activity of responding cells revealed the reason ΔMap/relA could not establish a persistent infection was that vaccination elicited development of cytotoxic CD8 T cells (CTL) with the capacity to kill intracellular bacteria. We demonstrated the same CTL response could be elicited with two rounds of antigenic stimulation of APC pulsed with ΔMap/relA or MMP ex vivo. Cytotoxicity was mediated through the perforin granzyme B pathway. Finally, cognate recognition of peptides presented in context of MHC I and II molecules to CD4 and CD8 T cells is required for development of CTL.
Collapse
Affiliation(s)
- Gaber S Abdellrazeq
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Elnaggar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | | | - Kun T Park
- Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gimhae, Gyeongsangnam-do, South Korea
| | - Cleverson D Souza
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| | - Brian Backer
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA, USA
| | - Victoria Hulubei
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Lindsay M Fry
- USDA, ARS, Animal Disease Research Unit, Pullman, WA, USA
| | - Samy A Khaliel
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Helmy A Torky
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,USDA, ARS, Animal Disease Research Unit, Pullman, WA, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
8
|
Galvão CE, Fragoso SP, de Oliveira CE, Forner O, Pereira RRB, Soares CO, Rosinha GMS. Identification of new Corynebacterium pseudotuberculosis antigens by immunoscreening of gene expression library. BMC Microbiol 2017; 17:202. [PMID: 28934943 PMCID: PMC5609009 DOI: 10.1186/s12866-017-1110-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Caseous lymphadenitis (CLA) is a disease that affects sheep, goats and occasionally humans. The etiologic agent is the Corynebacterium pseudotuberculosis bacillus. The objective of this study was to build a gene expression library from C. pseudotuberculosis and use immunoscreening to identify genes that encode potential antigenic proteins for the development of DNA and subunit vaccines against CLA. Results A wild strain of C. pseudotuberculosis was used for extraction and partial digestion of genomic DNA. Sequences between 1000 and 5000 base pairs (bp) were excised from the gel, purified, and the digested DNA fragments were joined to bacteriophage vector ZAP Express, packaged into phage and transfected into Escherichia coli. For immunoscreening a positive sheep sera pool and a negative sera pool for CLA were used. Four clones were identified that strongly reacted to sera. The clones were confirmed by polymerase chain reaction (PCR) followed by sequencing for genomic comparison of C. pseudotuberculosis in GenBank. The genes identified were dak2, fagA, fagB, NlpC/P60 protein family and LPxTG putative protein family. Conclusion Proteins of this type can be antigenic which could aid in the development of subunit or DNA vaccines against CLA as well as in the development of serological tests for diagnosis. Immunoscreening of the gene expression library was shown to be a sensitive and efficient technique to identify probable immunodominant genes.
Collapse
Affiliation(s)
| | | | | | - Odinéia Forner
- Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Cleber Oliveira Soares
- Embrapa Beef Cattle, Animal Health - Animal Genetic Engineering Laboratory, Campo Grande, MS, Brazil
| | | |
Collapse
|
9
|
Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle. PLoS One 2017; 12:e0184373. [PMID: 28863177 PMCID: PMC5581170 DOI: 10.1371/journal.pone.0184373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.
Collapse
|
10
|
Identification of Novel Seroreactive Antigens in Johne's Disease Cattle by Using the Mycobacterium tuberculosis Protein Array. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00081-17. [PMID: 28515134 DOI: 10.1128/cvi.00081-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays.
Collapse
|
11
|
Kim SK, Park YM, Jung KH, Chai YG. Deletion of a putative NlpC/P60 endopeptidase BAS1812 affects germination, long-term survival and endospore formation in Bacillus anthracis. MICROBIOLOGY-SGM 2016; 163:144-152. [PMID: 28008818 DOI: 10.1099/mic.0.000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus anthracis, an aetiologic agent of the zoonotic disease anthrax, encodes a putative NlpC/P60 endopeptidase BAS1812. It harbours a signal peptide, three bacterial SH3 domains and an NlpC/P60 family domain. Previous studies showed that BAS1812 is immunogenic in infected hosts and is a potential biomarker for anthrax treatment. To date, however, little information is known about its function and involvement in anthrax pathogenesis. Here we describe the phenotypic effect of BAS1812 deletion in B. anthracis Sterne strain. Transcriptional analysis showed that BAS1812 expression in a host-like environment was enhanced at the end of log phase, started to diminish after entry to stationary phase and increased again late in stationary phase. The constructed BAS1812 mutant showed impaired long-term survival in the stationary growth phase, less resilience to detergent, lesser endospore formation and delayed germination. The mutant also showed diminished ability to degrade peptidoglycan, but its ability to produce anthrax exotoxins was not affected. We hypothesize that BAS1812 is a cell wall hydrolase involved in biological activities related to maintaining cell wall integrity, sporulation and spore germination.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yun Min Park
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.,Department of Molecular and Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
12
|
Bannantine JP, Lingle CK, Adam PR, Ramyar KX, McWhorter WJ, Stabel JR, Picking WD, Geisbrecht BV. NlpC/P60 domain-containing proteins of Mycobacterium avium subspecies paratuberculosis that differentially bind and hydrolyze peptidoglycan. Protein Sci 2016; 25:840-51. [PMID: 26799947 DOI: 10.1002/pro.2884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydrolases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as cell separation during late stages of division. Some of these proteins have been shown to cleave peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence of zebra fish; however, there are still significant knowledge gaps concerning the molecular function of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome sequence encodes five NlpC/P60 domain-containing proteins. We describe atomic resolution crystal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures, combined with functional assays to measure peptidoglycan cleavage activity, led to the observation that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Furthermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as efficiently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the catalytic cysteine-155 residue to a serine significantly diminished catalytic activity, but did not affect binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for NlpC/P60 domain-containing proteins than simply hydrolases.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa
| | - Cari K Lingle
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Philip R Adam
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma
| | - Kasra X Ramyar
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - William J McWhorter
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa
| | - William D Picking
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma
| | - Brian V Geisbrecht
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
13
|
Antigenicity of recombinant maltose binding protein-Mycobacterium avium subsp. paratuberculosis fusion proteins with and without factor Xa cleaving. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1817-26. [PMID: 24132604 DOI: 10.1128/cvi.00596-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced.
Collapse
|
14
|
Disparate host immunity to Mycobacterium avium subsp. paratuberculosis antigens in calves inoculated with M. avium subsp. paratuberculosis, M. avium subsp. avium, M. kansasii, and M. bovis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:848-57. [PMID: 23554467 DOI: 10.1128/cvi.00051-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and a criticism of the current tests that are used for the detection of paratuberculosis. In the present study, Mycobacterium avium subsp. paratuberculosis recombinant proteins were evaluated for antigenic specificity compared to a whole-cell sonicate preparation (MPS). Measures of cell-mediated immunity to M. avium subsp. paratuberculosis antigens were compared in calves inoculated with live M. avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), Mycobacterium kansasii, or Mycobacterium bovis. Gamma interferon (IFN-γ) responses to MPS were observed in all calves that were exposed to mycobacteria compared to control calves at 4 months postinfection. Pooled recombinant M. avium subsp. paratuberculosis proteins also elicited nonspecific IFN-γ responses in inoculated calves, with the exception of calves infected with M. bovis. M. avium subsp. paratuberculosis proteins failed to elicit antigen-specific responses for the majority of immune measures; however, the expression of CD25 and CD26 was upregulated on CD4, CD8, gamma/delta (γδ) T, and B cells for the calves that were inoculated with either M. avium subsp. paratuberculosis or M. avium after antigen stimulation of the cells. Stimulation with MPS also resulted in the increased expression of CD26 on CD45RO(+) CD25(+) T cells from calves inoculated with M. avium subsp. paratuberculosis and M. avium. Although recombinant proteins failed to elicit specific responses for the calves inoculated with M. avium subsp. paratuberculosis, the differences in immune responses to M. avium subsp. paratuberculosis antigens were dependent upon mycobacterial exposure. The results demonstrated a close alignment in immune responses between calves inoculated with M. avium subsp. paratuberculosis and those inoculated with M. avium that were somewhat disparate from the responses in calves infected with M. bovis, suggesting that the biology of mycobacterial infection plays an important role in diagnosis.
Collapse
|