1
|
Sun K, Luo S, Jiang Y, Guo J, Wang X, Cheng K, Xu C, Zhang Y, Gao C, Lu J, Du P, Yu Y, Wang R, Yang Z, Zhou C. Neutralizing chimeric heavy-chain antibody targeting the L-HN domain of Clostridium botulinum neurotoxin type F. Arch Toxicol 2024; 98:4187-4195. [PMID: 39311906 DOI: 10.1007/s00204-024-03869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Botulinum toxin (BoNT) from Clostridium botulinum is the most toxic biotoxin known and is also an important bioterrorism agent. After poisoning, the only effective treatment is injection of antitoxin. However, neutralizing nanoantibodies are safer and more effective, representing a promising therapeutic approach. Therefore, it is important to obtain effective neutralizing nanoantibodies. Hence, the present study aimed to construct a phage antibody library by immunizing a camel and screening specific clones that bind to the L-HN domain of BoNT/F and constructing chimeric heavy-chain antibodies by fusing them with a human Fc fragment. The antibodies' affinity and in vivo neutralizing activities were evaluated. The results showed that 2 µg of F20 antibody could completely neutralize 20 × the median lethal dose (LD50) of BoNT/F in vitro. Injection of 5 mg/kg F20 at 1 h, 2 h, 3 h, and 4 h into mice after BoNT/F challenge resulted in complete survival in vivo. Overall, the antibody might be a candidate for the development of new drugs to treat botulism.
Collapse
Affiliation(s)
- Kaiyue Sun
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shudi Luo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Kexuan Cheng
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yixiao Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Wang J, Lu J, Li B, Liu X, Wang R, Du P, Yu S, Yang Z, Yu Y. New Engineered-Chimeric Botulinum Neurotoxin Mutant Acts as an Effective Bivalent Vaccine Against Botulinum Neurotoxin Serotype A and E. Immunology 2024. [PMID: 39354747 DOI: 10.1111/imm.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), including serotypes A and E, are potent biotoxins known to cause human poisoning. In addition to the critical protective antigen found in the full BoNT molecule, the receptor binding domain (Hc domain), BoNTs also harbour another essential protective antigen-the light chain-translocation domain (L-HN domain). Leveraging these pivotal protective antigens, we genetically engineered a series of inactivated chimeric molecules incorporating L-HN and Hc domains of BoNT/A and E. The structure of these chimeric molecules, mirror BoNT/A and E, but are devoid of enzyme activity. Experimental findings demonstrated that a lead candidate mEL-HN-mAHc harnessing the inactivated protease LCHN/E with the mutated gangliosides binding site Hc/A (mE-mA) elicited robust immune protection against BoNT/A and E simultaneously in a mouse model, requiring low immune dosages and minimal immunisations. Moreover, mE-mA exhibited high protective efficacy against BoNT/A and E in guinea pigs and New Zealand white rabbits, resulting in elevated neutralising antibody titres. Furthermore, mE-mA proved to be a more stable and safer vaccine compared to formaldehyde-inactivated toxoid. Our data underscore the genetically engineered mE-mA as a highly effective bivalent vaccine against BoNT/A and E, paving the way for the development of polyvalent vaccines against biotoxins.
Collapse
Affiliation(s)
- Jingrong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Bolin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoyu Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Li BL, Wang JR, Liu XY, Lu JS, Wang R, Du P, Yu S, Pang XB, Yu YZ, Yang ZX. Tetanus toxin and botulinum neurotoxin-derived fusion molecules are effective bivalent vaccines. Appl Microbiol Biotechnol 2023; 107:7197-7211. [PMID: 37741939 DOI: 10.1007/s00253-023-12796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.
Collapse
Affiliation(s)
- Bo-Lin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Jing-Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xu-Yang Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
- Pharmaceutical College, Henan University, Kaifeng, 475001, China
| | - Jian-Sheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, 475001, China.
| | - Yun-Zhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| |
Collapse
|
4
|
Li Z, Li B, Lu J, Liu X, Tan X, Wang R, Du P, Yu S, Xu Q, Pang X, Yu Y, Yang Z. Biological and Immunological Characterization of a Functional L-HN Derivative of Botulinum Neurotoxin Serotype F. Toxins (Basel) 2023; 15:toxins15030200. [PMID: 36977091 PMCID: PMC10056376 DOI: 10.3390/toxins15030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) can cause nerve paralysis syndrome in mammals and other vertebrates. BoNTs are the most toxic biotoxins known and are classified as Class A biological warfare agents. BoNTs are mainly divided into seven serotypes A-G and new neurotoxins BoNT/H and BoNT/X, which have similar functions. BoNT proteins are 150 kDa polypeptide consisting of two chains and three domains: the light chain (L, catalytic domain, 50 kDa) and the heavy chain (H, 100 kDa), which can be divided into an N-terminal membrane translocation domain (HN, 50 kDa) and a C-terminal receptor binding domain (Hc, 50 kDa). In current study, we explored the immunoprotective efficacy of each functional molecule of BoNT/F and the biological characteristics of the light chain-heavy N-terminal domain (FL-HN). The two structure forms of FL-HN (i.e., FL-HN-SC: single chain FL-HN and FL-HN-DC: di-chain FL-HN) were developed and identified. FL-HN-SC could cleave the vesicle associated membrane protein 2 (VAMP2) substrate protein in vitro as FL-HN-DC or FL. While only FL-HN-DC had neurotoxicity and could enter neuro-2a cells to cleave VAMP2. Our results showed that the FL-HN-SC had a better immune protection effect than the Hc of BoNT/F (FHc), which indicated that L-HN-SC, as an antigen, provided the strongest protective effects against BoNT/F among all the tested functional molecules. Further in-depth research on the different molecular forms of FL-HN suggested that there were some important antibody epitopes at the L-HN junction of BoNT/F. Thus, FL-HN-SC could be used as a subunit vaccine to replace the FHc subunit vaccine and/or toxoid vaccine, and to develop antibody immune molecules targeting L and HN domains rather than the FHc domain. FL-HN-DC could be used as a new functional molecule to evaluate and explore the structure and activity of toxin molecules. Further exploration of the biological activity and molecular mechanism of the functional FL-HN or BoNT/F is warranted.
Collapse
Affiliation(s)
- Zhiying Li
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Bolin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuyang Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaobin Pang
- Pharmaceutical College, Henan University, Kaifeng 475001, China
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence: (Y.Y.); (Z.Y.)
| |
Collapse
|
5
|
Shi DY, Liu FJ, Li ZY, Mao YY, Lu JS, Wang R, Pang XB, Yu YZ, Yang ZX. Development and evaluation of a tetravalent botulinum vaccine. Hum Vaccin Immunother 2022; 18:2048621. [PMID: 35435814 PMCID: PMC9196761 DOI: 10.1080/21645515.2022.2048621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic known proteins. Naturally occurring botulism in humans is caused by botulinum serotypes A, B, E, and F. Vaccination is an effective strategy to prevent botulism. In this study, a tetravalent botulinum vaccine (TBV) that can prevent serotypes A, B, E, and F was developed using the C-terminal receptor-binding domain of BoNT (Hc) as an antigen. To develop a suitable vaccine formulation, in vitro binding experiments of antigens and aluminum adjuvant in different buffers, and in vivo experiments of TBV at different antigen concentrations, were conducted. Our results showed that the optimal vaccine formulation buffer was a pH 6.0 phosphate buffer, and the suitable antigen concentration was 40 or 80 µg/ml of each antigen. A pilot-scale TBV was then prepared and evaluated for immunogenicity and stability. The results showed that TBV could elicit strong protective efficacy against each BoNT in mice, and remain effective after two years of storage at 4ºC, indicating that the preparation was stable and highly effective. Adsorption experiments also showed that the antigens could be well adsorbed by the aluminum adjuvant after 2 years of storage. Our results provide valuable experimental data supporting the development of a tetravalent botulinum vaccine, which is a promising candidate for the prevention of botulinum serotypes A, B, E, and F.
Collapse
Affiliation(s)
- Dan-Yang Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Fu-Jia Liu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Zhi-Ying Li
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Yun-Yun Mao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jian-Sheng Lu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, China
| | - Yun-Zhou Yu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
6
|
Li Z, Lu J, Tan X, Wang R, Xu Q, Yu Y, Yang Z. Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E. Toxins (Basel) 2022; 14:toxins14020135. [PMID: 35202162 PMCID: PMC8880310 DOI: 10.3390/toxins14020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.
Collapse
Affiliation(s)
- Zhen Li
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Xiao Tan
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Yunzhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing 100071, China; (Z.L.); (J.L.); (X.T.); (R.W.)
- Correspondence: (Q.X.); (Y.Y.); (Z.Y.)
| |
Collapse
|
7
|
Liu FJ, Shi DY, Li ZY, Lu JS, Wang R, Pang XB, Yang ZX, Yu YZ. Evaluation of a recombinant tetanus toxin subunit vaccine. Toxicon 2020; 187:75-81. [PMID: 32889026 DOI: 10.1016/j.toxicon.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tetanus is an acute, fatal disease caused by exotoxin produced by Clostridium tetani. The current vaccine against tetanus is based on inactivated tetanus toxin (TeNT). To develop a recombinant TeNT vaccine suitable for replacement of full-length tetanus toxoid (TT) vaccine for use in humans, a recombinant non-tagged isoform of the Hc domain of the tetanus toxin (THc) was expressed in Escherichia coli and purified by sequential chromatography steps. The immunogenicity and protective effect of the THc antigen were explored and compared with those of TT in Balb/c mice. The THc-based subunit vaccine provided complete protection against TeNT challenge following a high dosage as a toxoid vaccine. While the anti-THc and neutralising antibody titres were higher for the THc-based vaccine than the TT vaccine because protective epitopes are located on the THc domain. Frequency- and dose-dependent immunoprotection were also observed in THc-immunised mice. Mice immunised with one injection of 1 μg or 4 μg THc antigen were completely protected against 102 or 103 50% mouse lethal dose (LD50) of TeNT, respectively. Furthermore, the THc protein was found to recognise and bind to ganglioside GT1b in a dose-dependent manner, and anti-THc sera antibodies also inhibited binding between THc and GT1b. Antigen on the form of recombinant non-tagged THc domain expressed in E. coli achieved strong immunoprotective potency, suggesting that it could be developed into a candidate subunit vaccine against tetanus as an alternative to the current TT vaccine.
Collapse
Affiliation(s)
- Fu-Jia Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China; Pharmaceutical College, Henan University, Kaifeng, 475001, China
| | - Dan-Yang Shi
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhi-Ying Li
- Beijing Institute of Biotechnology, Beijing, 100071, China; Pharmaceutical College, Henan University, Kaifeng, 475001, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Rong Wang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, 475001, China.
| | - Zhi-Xin Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
8
|
Yadav SK, Singh M, Sarkaraisamy P. Expression and purification of catalytic domain of botulinum neurotoxin serotype ‘F’: immunological characterization and its application in detection. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1740731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shiv Kumar Yadav
- BDTE Division, Defence Research & Development Establishment, Gwalior, India
| | - Monika Singh
- BDTE Division, Defence Research & Development Establishment, Gwalior, India
| | | |
Collapse
|
9
|
Shi DY, Liu FJ, Mao YY, Cui RT, Lu JS, Yu YZ, Dong XJ, Yang ZX, Sun ZW, Pang XB. Development and evaluation of candidate subunit vaccine and novel antitoxin against botulinum neurotoxin serotype E. Hum Vaccin Immunother 2019; 16:100-108. [PMID: 31210561 DOI: 10.1080/21645515.2019.1633878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most toxic proteins. Vaccination is an effective strategy to prevent botulism. To generate a vaccine suitable for human use, a recombinant non-His-tagged isoform of the Hc domain of botulinum neurotoxin serotype E (rEHc) was expressed in Escherichia coli and purified by sequential chromatography. The immunogenicity of rEHc was evaluated in mice and dose- and time-dependent immune responses were observed in both antibody titers and protective potency. Then, the pilot-scale expression and purification of rEHc were performed, and its immunological activity was characterized. Our results showed rEHc has good immunogenicity and can elicit strong protective potency against botulinum neurotoxin serotype E (BoNT/E) in mice, indicating that rEHc is an effective botulism vaccine candidate. Further, we developed a novel antitoxin against BoNT/E by purifying F(ab')2 from pepsin-digested serum IgG of rEHc-inoculated horses. The protective effect of the F(ab')2 antitoxin was determined in vitro and in vivo. The results showed that our F(ab')2 antitoxin can prevent botulism in BoNT/E-challenged mice and effectively alleviate the progression of paralysis caused by BoNT/E to achieve therapeutic effects. Therefore, our results provide valuable experimental data for the production of a novel antitoxin, which is a promising candidate for the treatment of BoNT/E-induced botulism.
Collapse
Affiliation(s)
- Dan-Yang Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fu-Jia Liu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Yun-Yun Mao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong-Tian Cui
- Department of Drug Registration, Jiangsu T-mab BioPharma Co., Ltd, Taizhou, China
| | - Jian-Sheng Lu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yun-Zhou Yu
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Jie Dong
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Wei Sun
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Shi DY, Chen BY, Mao YY, Zhou G, Lu JS, Yu YZ, Zhou XW, Sun ZW. Development and evaluation of candidate subunit vaccine against botulinum neurotoxin serotype B. Hum Vaccin Immunother 2018; 15:755-760. [PMID: 30433836 DOI: 10.1080/21645515.2018.1547613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potential biological weapons because of their high toxicity and mortality. Vaccination is an effective strategy to prevent botulism. The carboxyl-terminus of the heavy chain (Hc domain) is nontoxic and sufficient to generate protective immune responses against natural BoNTs in animals. To produce a vaccine suitable for human use, a recombinant non His-tagged isoform of the Hc domain of botulinum neurotoxin serotype B (BHc) was expressed in Escherichia coli and purified by sequential chromatography. The immunogenicity of recombinant E.coli-expressed BHc and the yeast-expressed mBHc antigens was explored and compared in Balb/c mice. BHc provided comparable protective potency but elicited significantly higher antibody titer and neutralization potency against BoNT/B after twice immunization, indicating that the recombinant BHc protein expressed in E.coli have better immunogenicity than the yeast-expressed mBHc. Moreover, a frequency and dose-dependent effect was observed in mice immunized with BHc subunit vaccine and the anti-BHc ELISA antibody titers correlated well with neutralizing antibody titers and protection potency. In summary, the Alhydrogel-formulated BHc subunit vaccine afforded effective protection against BoNT/B challenge. Therefore, the non-His-tagged and homogeneous BHc expressed in E.coli represents a good potential candidate subunit vaccine for human use.
Collapse
Affiliation(s)
- Dan-Yang Shi
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Bo-Yang Chen
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Yun-Yun Mao
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Guo Zhou
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Jian-Sheng Lu
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Yun-Zhou Yu
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Xiao-Wei Zhou
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| | - Zhi-Wei Sun
- a Department of Protein Engineering , Beijing Institute of Biotechnology , Beijing , China
| |
Collapse
|
11
|
Production of recombinant botulism antigens: A review of expression systems. Anaerobe 2014; 28:130-6. [DOI: 10.1016/j.anaerobe.2014.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022]
|
12
|
Thomas S, Luxon BA. Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev Vaccines 2014; 12:1301-11. [DOI: 10.1586/14760584.2013.840092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
The receptor binding domain of botulinum neurotoxin serotype A (BoNT/A) inhibits BoNT/A and BoNT/E intoxications in vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1266-73. [PMID: 23761665 DOI: 10.1128/cvi.00268-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor binding domain of botulinum neurotoxin (BoNT), also designated the C terminus of the heavy chain (H(C)), is a promising vaccine candidate against botulism. In this study, a highly efficient expression system for the protein was developed in Escherichia coli, which provided yields that were 1 order of magnitude higher than those reported to date (350 mg H(C) per liter). The product was highly immunogenic, protecting mice from a challenge with 10(5) 50% lethal dose (LD(50)) after a single vaccination and generating a neutralizing titer of 49.98 IU/ml after three immunizations. In addition, a single boost with HC increased neutralizing titers by up to 1 order of magnitude in rabbits hyperimmunized against toxoid. Moreover, we demonstrate here for the first time in vivo inhibition of BoNT/A intoxication by H(C)/A, presumably due to a blockade of the neurotoxin protein receptor SV2. Administration of HC/A delayed the time to death from 10.4 to 27.3 h in mice exposed to a lethal dose of BoNT/A (P = 0.0005). Since BoNT/A and BoNT/E partially share SV2 isoforms as their protein receptors, the ability of H(C)/A to cross-inhibit BoNT/E intoxication was evaluated. The administration of H(C)/A together with BoNT/E led to 50% survival and significantly delayed the time to death for the nonsurviving mice (P = 0.003). Furthermore, a combination of H(C)/A and a subprotective dose of antitoxin E fully protected mice against 850 mouse LD(50) of BoNT/E, suggesting complementary mechanisms of protection consisting of toxin neutralization by antibodies and receptor blocking by H(C)/A.
Collapse
|
14
|
Yu YZ, Guo JP, An HJ, Zhang SM, Wang S, Yu WY, Sun ZW. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors. Vaccine 2013; 31:2427-32. [PMID: 23583890 DOI: 10.1016/j.vaccine.2013.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/07/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Human botulism is commonly associated with botulinum neurotoxin (BoNT) serotypes A, B, E and F. This suggests that the greatest need is for a tetravalent vaccine that provides protection against all four of these serotypes. In current study, we investigated the feasibility of generating several tetravalent vaccines that protected mice against the four serotypes. Firstly, monovalent replicon vaccine against BoNT induced better antibody response and protection than that of corresponding conventional DNA vaccine. Secondly, dual-expression DNA replicon pSCARSE/FHc or replicon particle VRP-E/FHc vaccine was well resistant to the challenge of BoNT/E and BoNT/F mixture as a combination vaccine composed of two monovalent replicon vaccines. Finally, the dual-expression DNA replicon or replicon particle tetravalent vaccine could simultaneously and effectively neutralize and protect the four BoNT serotypes. Protection correlated directly with serum ELISA titers and neutralization antibody levels to BoNTs. Therefore, replicon-based DNA or particle might be effective vector to develop BoNT vaccines, which might be more desirable for use in clinical application than the conventional DNA vaccines. Our studies demonstrate the utility of combining dual-expression DNA replicon or replicon particle vaccines into multi-agent formulations as potent tetravalent vaccines for eliciting protective responses to four serotypes of BoNTs.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Villaflores OB, Hsei CM, Teng CY, Chen YJ, Wey JJ, Tsui PY, Shyu RH, Tung KL, Yeh JM, Chiao DJ, Wu TY. Easy expression of the C-terminal heavy chain domain of botulinum neurotoxin serotype A as a vaccine candidate using a bi-cistronic baculovirus system. J Virol Methods 2013; 189:58-64. [PMID: 23313783 DOI: 10.1016/j.jviromet.2012.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Clostridial botulinum neurotoxin (BoNT) is one of the most toxic proteins causing the food borne disease, botulism. In previous studies, recombinant BoNT production by Escherichia coli and yeast Pichia pastoris has been hampered by high AT content and codon bias in the gene encoding BoNT and required a synthetic gene to resolve this intrinsic bottleneck. This paper reports the simultaneous expression of the C-terminal heavy chain domain of BoNT (rBoNT/A-HC-6h) and enhanced green fluorescent protein (EGFP) using a bi-cistronic baculovirus-insect cell expression system. The expression of EGFP facilitated the monitoring of viral infection, virus titer determination, and isolation of the recombinant virus. Protein fusion with hexa-His-tag and one-step immobilized metal-ion affinity chromatography (IMAC) purification produced a homogenous, stable, and immunologically active 55-kDa rBoNT/A-HC-6h (about 3mg/L) with >90% purity. Furthermore, measured levels of serum titers were 8-folds for mice vaccinated with the purified rBoNT/A-HC-6h (2μg) than for mice administered with botulinum toxoid after initial immunization. Challenge experiment with botulinum A toxin demonstrated the immunoprotective activity of purified rBoNT/A-HC-6h providing the mice full protection against 10(2) LD50 botulinum A toxin with a dose as low as 0.2μg. This study provided supportive evidence for the use of a bi-cistronic baculovirus-Sf21 insect cell expression system in the facile expression of an immunogenically active rBoNT/A-HC.
Collapse
|
16
|
Liu Z, Zhang C, Li Y, Song C, Sun Y, Wei Y, Xu Z, Yang A, Xu Z, Yang K, Jin B. High sensitivity ELISA for detection of botulinum neurotoxin serotype F. Hybridoma (Larchmt) 2012; 31:233-9. [PMID: 22894775 DOI: 10.1089/hyb.2012.0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are classified as category A biological threat agents by the Centers for Disease Control and Prevention (CDC) in the United States for its hazardous and potential bioterrorist threat to the public. About 1% naturally occurring botulisms are caused by Botulinum neurotoxin serotype F (BoNT/F). Most of the immunoassays for detecting BoNTs focus on the serotypes A and B, but few methods have been established for the detection of BoNT/F. Recently, the recombinant Hc subunit of botulinum neurotoxin type F (rFHc) was expressed as an effective vaccine against BoNT/F, indicating that this rFHc could be an effective immunogen to raise monoclonal antibodies (MAbs) for the detection and neutralization of BoNT/F. Here we present a novel sandwich enzyme-linked immunosorbent assay (ELISA) based on two MAbs against rFHc, which were FMMU-BTF-8 and FMMU-BTF-29 as capture antibody and detection antibody, respectively. The limit of detection (LOD) of this ELISA reached 12.09 pg/mL, much less than that of the other reported immunoassays. A simple, sensitive ELISA for detecting and quantifying BoNT/F was established, which can be used as a valuable method to detect and quantify BoNT/F.
Collapse
Affiliation(s)
- Zhijia Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu YZ, Gong ZW, Ma Y, Zhang SM, Zhu HQ, Wang WB, Du Y, Wang S, Yu WY, Sun ZW. Co-expression of tetanus toxin fragment C in Escherichia coli with thioredoxin and its evaluation as an effective subunit vaccine candidate. Vaccine 2011; 29:5978-85. [PMID: 21718736 DOI: 10.1016/j.vaccine.2011.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 06/13/2011] [Indexed: 12/12/2022]
Abstract
The receptor-binding domain of tetanus toxin (THc), which mediates the binding of the toxin to the nerve cells, is a candidate subunit vaccine against tetanus. In this study one synthetic gene encoding the THc was constructed and highly expressed in Escherichia coli by co-expression with thioredoxin (Trx). The purified THc-vaccinated mice were completely protected against an active toxin challenge in mouse models of disease and the potency of two doses of THc was comparable to that of three doses of toxoid vaccine. And a solid-phase assay showed that the anti-THc sera inhibited the binding of THc or toxoid to the ganglioside GT1b as the anti-tetanus toxoid sera. Furthermore, mice were vaccinated once or twice at four different dosages of THc and a dose-response was observed in both the antibody titer and protective efficacy with increasing dosage of THc and number of vaccinations. The data presented in the report showed that the recombinant THc expressed in E. coli is efficacious in protecting mice against challenge with tetanus toxin suggesting that the THc protein may be developed into a human subunit vaccine candidate designed for the prevention of tetanus.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li N, Yu YZ, Yu WY, Sun ZW. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 2011; 33:211-9. [PMID: 21284488 DOI: 10.3109/08923971003782327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Granulocyte-macrophage clony-stimulating factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells to the site of antigen synthesis as well as stimulate the maturation of dendritic cells.This study evaluated the utility of GM-CSF as a plasmid DNA replicon vaccine adjuvants for botulinum neurotoxin serotype A (BoNT/A) in mouse model. In balb/c mice that received the plasmid DNA replicon vaccines derived from Semliki Forest virus (SFV) carrying the Hc gene of BoNT/A (AHc), both antibody and lymphoproliferative response specific to AHc were induced, the immunogenicity was enhanced by co-delivery or coexpress of the GM-CSF gene. In particular, when AHc and GM-CSF were coexpressed within the SFV based DNA vaccine, the anti-AHc antibody titers and survival rates of immunized mice after challenged with BoNT/A were significantly increased, and further enhanced by coimmunization with aluminum phosphate adjuvant.
Collapse
Affiliation(s)
- Na Li
- Beijing Institute of Biotechnology, Beijing, China
| | | | | | | |
Collapse
|
19
|
Yu YZ, Wang WB, Li N, Wang S, Yu WY, Sun ZW. Enhanced potency of individual and bivalent DNA replicon vaccines or conventional DNA vaccines by formulation with aluminum phosphate. Biologicals 2011; 38:658-63. [PMID: 20805035 DOI: 10.1016/j.biologicals.2010.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022] Open
Abstract
DNA vaccines against botulinum neurotoxin (BoNTs) induce protective humoral immune responses in mouse model, but when compared with conventional vaccines such as toxoid and protein vaccines, DNA vaccines often induce lower antibody level and protective efficacy and are still necessary to increase their potency. In this study we evaluated the potency of aluminum phosphate as an adjuvant of DNA vaccines to enhance antibody responses and protective efficacy against botulinum neurotoxin serotypes A and B in Balb/c mice. The administration of these individual and bivalent plasmid DNA replicon vaccines against botulinum neurotoxin serotypes A and B in the presence of aluminum phosphate improved both antibody responses and protective efficacy. Furthermore, formulation of conventional plasmid DNA vaccines encoding the same Hc domains of botulinum neurotoxin serotypes A and B with aluminum phosphate adjuvant increased both antibody responses and protective efficacy. These results indicate aluminum phosphate is an effective adjuvant for these two types of DNA vaccines (i.e., plasmid DNA replicon vaccines and conventional plasmid DNA vaccines), and the vaccine formulation described here may be an excellent candidate for further vaccine development against botulinum neurotoxins.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Protein Engineering of Lab, 20 Dong Dajie Street, Fengtai District, Beijing 100071, China.
| | | | | | | | | | | |
Collapse
|
20
|
Yu YZ, Zhang SM, Ma Y, Zhu HQ, Wang WB, Du Y, Zhou XW, Wang RL, Wang S, Yu WY, Huang PT, Sun ZW. Development and evaluation of candidate vaccine and antitoxin against botulinum neurotoxin serotype F. Clin Immunol 2010; 137:271-80. [PMID: 20696619 DOI: 10.1016/j.clim.2010.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
To produce a vaccine suitable for human use, a recombinant non His-tagged isoform of the Hc domain of botulinum neurotoxin serotype F (rFHc) was expressed in Escherichia coli and purified by sequential chromatography. The rFHc was evaluated as a subunit vaccine candidate in mouse model of botulism. A dose-response was observed in both antibody titer and protective efficacy with increasing dosage of rFHc and number of vaccinations. These findings suggest that the rFHc is an effective botulism vaccine candidate. Further, we developed a new antitoxin against botulinum neurotoxin serotype F (BoNT/F) by purifying F(ab')(2) fragments from pepsin digested serum IgGs of horses inoculated with rFHc. The protective effect of the F(ab')(2) antitoxin against BoNT/F was determined both in vitro and in vivo. The results showed that the F(ab')(2) antitoxin could prevent botulism in mice challenged with BoNT/F and effectively delayed progression of paralysis from botulism in the therapeutic setting. Thus, our results provide valuable experimental data for this new antitoxin as a potential candidate for treatment of botulism caused by BoNT/F.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu YZ, Zhang SM, Wang WB, Du Y, Zhu HQ, Wang RL, Zhou XW, Lin JB, Wang S, Yu WY, Huang PT, Sun ZW. Development and preclinical evaluation of a new F(ab')₂ antitoxin against botulinum neurotoxin serotype A. Biochimie 2010; 92:1315-20. [PMID: 20600570 DOI: 10.1016/j.biochi.2010.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/10/2010] [Indexed: 11/30/2022]
Abstract
Concern about the malicious applications of botulinum neurotoxin has highlighted the need for a new generation of safe and highly potent antitoxins. In this study, we developed and evaluated the preclinical pharmacology and safety of a new F(ab')₂ antitoxin against botulinum neurotoxin serotype A (BoNT/A). As an alternative to formalin-inactivated toxoid, the recombinant Hc domain of botulinum neurotoxin serotype A (rAHc) was used to immunize horses, and the IgGs from the hyperimmune sera were digested to obtain F(ab')₂ antitoxin. The protective effect of the new F(ab')₂ antitoxin against BoNT/A was determined both in vitro and in vivo. The results showed that the F(ab')₂ antitoxin could prevent botulism in mice challenged with BoNT/A and effectively delayed progression of paralysis from botulism in the therapeutic setting. The preclinical safety of the new F(ab')₂ antitoxin was also evaluated, and it showed neither harmful effects on vital functions nor adverse effects such as acute toxicity, or immunological reactions in mice and dogs. Thus, our results provide valuable experimental data for this new antitoxin as a potential candidate for treatment of botulism caused by BoNT/A, and our findings support the safety of the new F(ab')₂ antitoxin for clinical use. Our study further demonstrates the proof of concept for development of a similar strategy for obtaining potent antitoxin against other BoNT serotypes.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mansour AA, Mousavi SL, Rasooli I, Nazarian S, Amani J, Farhadi N. Cloning, high level expression and immunogenicity of 1163-1256 residues of C-terminal heavy chain of C. botulinum neurotoxin type E. Biologicals 2010; 38:260-4. [PMID: 19879159 DOI: 10.1016/j.biologicals.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 11/24/2022] Open
|
23
|
Yu YZ, Li N, Zhu HQ, Wang RL, Du Y, Wang S, Yu WY, Sun ZW. The recombinant Hc subunit of Clostridium botulinum neurotoxin serotype A is an effective botulism vaccine candidate. Vaccine 2009; 27:2816-22. [DOI: 10.1016/j.vaccine.2009.02.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/09/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|