1
|
Li Y, Warren JA, Poston TB, Clutton G, Shaw FR, Conrad SZ, Xu Y, Zheng X, Yount KS, O’Connell CM, Wiesenfeld HC, Darville T, Goonetilleke N. Low-Frequency, Sustained CD4 T-Cell Responses Chlamydia trachomatis in Women: Predominant Targeting of Chlamydial Proteaselike Activity Factor (CPAF). J Infect Dis 2025; 231:e385-e395. [PMID: 39250505 PMCID: PMC11841636 DOI: 10.1093/infdis/jiae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Chlamydia trachomatis (CT) is a globally prevalent sexually transmitted infection that can result in pelvic inflammatory disease, ectopic pregnancy, and infertility in women. Currently, there is no prophylactic vaccine. METHODS This study examined T-cell immunity in a cohort of women recently infected with CT. Participants were screened against peptides spanning 33 of 894 possible CT proteins, either ex vivo or using short-term cell lines. CT-specific T cells were characterized by interferon (IFN) γ enzyme-linked immunospot (ELISPOT) assay and flow cytometry. RESULTS Ex vivo CT-specific T cells were rarely detected; however, in vitro expanded CT-specific T cells were detected by IFN-γ ELISPOT in 90% (27 of 30) of participants. Notably, >50% of participants had T-cell responses targeting chlamydial proteaselike activity factor (CPAF). T-cell epitopes were dispersed across the CPAF protein. Flow cytometric analysis of short-term cell lines found that CT-specific cells, mainly CD4, produced IFN-γ and tumor necrosis factor (TNF) α and were sustained over 12 months. Ex vivo analysis suggested that CT-specific T cells mostly exhibited a central memory phenotype. CONCLUSIONS Our results indicate that CT infection elicits low-frequency, persistent CD4 T-cell responses in most women and that the secreted protein, CPAF, is an immunoprevalent CT antigen. Altogether, these data support development and testing of CT vaccines that enhance CD4 T cells against CPAF.
Collapse
Affiliation(s)
- Yanli Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fiona R Shaw
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shayla Z Conrad
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kacy S Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine M O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Broder KC, Matrosova VY, Tkavc R, Gaidamakova EK, Ho LTVT, Macintyre AN, Soc A, Diallo A, Darnell SC, Bash S, Daly MJ, Jerse AE, Liechti GW. Irradiated whole cell Chlamydia vaccine confers significant protection in a murine genital tract challenge model. NPJ Vaccines 2024; 9:207. [PMID: 39528548 PMCID: PMC11554809 DOI: 10.1038/s41541-024-00968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia trachomatis infections are the most common bacterial STIs globally and can lead to serious morbidity if untreated. Development of a killed, whole-cell vaccine has been stymied by coincident epitope destruction during inactivation. Here, we present a prototype Chlamydia vaccine composed of elementary bodies (EBs) from the related mouse pathogen, Chlamydia muridarum (Cm). EBs inactivated by gamma rays (Ir-Cm) in the presence of the antioxidant Mn2+-Decapeptide (DEHGTAVMLK) Phosphate (MDP) are protected from epitope damage but not DNA damage. Cm EBs gamma-inactivated with MDP retain their structure and provide significant protection in a murine genital tract infection model. Mice vaccinated with Ir-Cm (+MDP) exhibited elevated levels of Cm-specific IgG and IgA antibodies, reduced bacterial burdens, accelerated clearance, and distinctive cytokine responses compared to unvaccinated controls and animals vaccinated with EBs irradiated without MDP. Preserving EB epitopes with MDP during gamma inactivation offers the potential for a polyvalent, whole-cell vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Kieran C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Vera Y Matrosova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rok Tkavc
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elena K Gaidamakova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lam Thuy Vi Tran Ho
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Stephen C Darnell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sarah Bash
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
Dziadula J, Sabbaj S, Gupta K, Cutter G, Yu H, Brunham RC, Geisler WM. Interferon-γ Responses to Chlamydia trachomatis Vaccine Candidate Proteins in Women With Different Chlamydia Outcomes. J Infect Dis 2024; 230:569-577. [PMID: 38394609 PMCID: PMC11420703 DOI: 10.1093/infdis/jiae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Chlamydia trachomatis testing and treatment strategies have not decreased infection rates, justifying need for a chlamydia vaccine. A murine study showed that a vaccine consisting of major outer membrane protein (MOMP) and polymorphic membrane proteins (Pmps) E, F, G, and H elicited protective immunity; studies on human cellular immune responses to Pmps are sparse. METHODS Interferon gamma (IFN-γ) responses to these 5 proteins were measured by ELISPOT in peripheral blood mononuclear cells from women returning for treatment of a positive chlamydia test. Responses were compared in those with spontaneous chlamydia clearance versus persisting infection at baseline and no reinfection versus reinfection at a 3-month follow-up visit. RESULTS IFN-γ response to 1 or more proteins was detected in 39% at baseline and 51.5% at follow-up, most often to PmpE and MOMP. IFN-γ responses to MOMP were detected less often at follow-up versus baseline in women with reinfection, but were maintained in those without reinfection. Women with spontaneous clearance had a higher magnitude of IFN-γ response to PmpE and MOMP. CONCLUSIONS IFN-γ responses to these 5 C. trachomatis vaccine candidate proteins were heterogenous and primarily directed against MOMP and PmpE. Spontaneous chlamydia clearance and absence of reinfection may be clinical correlates of protection.
Collapse
Affiliation(s)
- Jacob Dziadula
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kanupriya Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hong Yu
- British Columbia Centre for Disease Control, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert C Brunham
- British Columbia Centre for Disease Control, University of British Columbia, Vancouver, British Columbia, Canada
| | - William M Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
5
|
Richardson S, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Carroll D, Eko FO. Cellular Basis for the Enhanced Efficacy of the Fms-Like Tyrosine Kinase 3 Ligand (FL) Adjuvanted VCG-Based Chlamydia abortus Vaccine. Front Immunol 2021; 12:698737. [PMID: 34249004 PMCID: PMC8264281 DOI: 10.3389/fimmu.2021.698737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Darin Carroll
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
7
|
Helble JD, Mann AO, Starnbach MN. Antigen-specific memory and naïve CD4+ T cells following secondary Chlamydia trachomatis infection. PLoS One 2020; 15:e0240670. [PMID: 33091023 PMCID: PMC7580951 DOI: 10.1371/journal.pone.0240670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Memory antigen-specific CD4+ T cells against Chlamydia trachomatis are necessary for protection against secondary genital tract infection. While it is known that naïve antigen-specific CD4+ T cells can traffic to the genital tract in an antigen-specific manner, these T cells are not protective during primary infection. Here, we sought to compare the differences between memory and naïve antigen-specific CD4+ T cells in the same mouse following secondary infection using transgenic CD4+ T cells (NR1 T cells). Using RNA sequencing, we found that there were subtle but distinct differences between these two T cell populations. Naïve NR1 T cells significantly upregulated cell cycle genes and were more proliferative than memory NR1 T cells in the draining lymph node. In contrast, memory NR1 T cells were more activated than naïve NR1 T cells and were enriched in the genital tract. Together, our data provide insight into the differences between memory and naïve antigen-specific CD4+ T cells during C. trachomatis infection.
Collapse
Affiliation(s)
- Jennifer D. Helble
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| | - Alexander O. Mann
- Department of Immunology, Harvard Medical School, Boston, MA, United States of America
| | - Michael N. Starnbach
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Feldkamp ML, Arnold KE, Krikov S, Reefhuis J, Almli LM, Moore CA, Botto LD. Risk of gastroschisis with maternal genitourinary infections: the US National birth defects prevention study 1997-2011. BMJ Open 2019; 9:e026297. [PMID: 30928950 PMCID: PMC6475179 DOI: 10.1136/bmjopen-2018-026297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To assess the association between occurrence and timing of maternal self-reported genitourinary tract infection (urinary tract infections [UTIs] and/or sexually transmitted infection [STI]) and risk for gastroschisis in the offspring. DESIGN Population-based case-control study. SETTING National Birth Defects Prevention Study, a multisite study in the USA. PARTICIPANTS Mothers of 1366 gastroschisis cases and 11 238 healthy controls. MAIN OUTCOME MEASURES Crude and adjusted ORs (aORs) with 95% CIs. RESULTS Genitourinary infections were frequent in case (19.3%) and control women (9.9%) during the periconceptional period (defined as 3 months prior to 3 months after conception). UTI and/or STI in the periconceptional period were associated with similarly increased risks for gastroschisis (aOR 1.5, 95% CI 1.3 to 1.8; aOR 1.6, 95% CI 1.2 to 2.3, respectively). The risk was increased with a UTI before (aOR 2.5; 95% CI 1.4 to 4.5) or after (aOR 1.7; 95% CI 1.1 to 2.6) conception only among women ≥25 years of age. The risk was highest among women <20 years of age with an STI before conception (aOR 3.6; 95% CI 1.5 to 8.4) and in women ≥25 years of age, the risk was similar for before (aOR 2.9; 95% CI 1.0 to 8.5) and after (aOR 2.8; 95% CI 1.3 to 6.1) conception. A specific STI pathogen was reported in 89.3% (50/56) of cases and 84.3% (162/191) of controls with Chlamydia trachomatis the most common (25/50 cases, 50%; 58/162 controls, 36%) and highest among women <20 years of age (16/25 cases, 64%; 22/33 controls, 67%). CONCLUSIONS UTI and/or STI were associated with an increased risk for gastroschisis, with the strength of the association varying by maternal age and timing of infection.
Collapse
Affiliation(s)
- Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kathryn E Arnold
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sergey Krikov
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lynn M Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Carter Consulting, Inc, Atlanta, Georgia, USA
| | - Cynthia A Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Quigley BL, Carver S, Hanger J, Vidgen ME, Timms P. The relative contribution of causal factors in the transition from infection to clinical chlamydial disease. Sci Rep 2018; 8:8893. [PMID: 29891934 PMCID: PMC5995861 DOI: 10.1038/s41598-018-27253-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Chlamydia is a major bacterial pathogen in humans and animals globally. Yet 80% of infections never progress to clinical disease. Decades of research have generated an interconnected network linking pathogen, host, and environmental factors to disease expression, but the relative importance of these and whether they account for disease progression remains unknown. To address this, we used structural equation modeling to evaluate putative factors likely to contribute to urogenital and ocular chlamydial disease in the koala (Phascolarctos cinereus). These factors include Chlamydia detection, load, and ompA genotype; urogenital and ocular microbiomes; host sex, age, weight, body condition; breading season, time of year; location; retrovirus co-infection; and major histocompatibility complex class II (MHCII) alleles. We show different microbiological processes underpin disease progression at urogenital and ocular sites. From each category of factors, urogenital disease was most strongly predicted by chlamydial PCR detection and load, koala body condition and environmental location. In contrast, ocular disease was most strongly predicted by phylum-level Chlamydiae microbiome proportions, sampling during breeding season and co-infection with koala retrovirus subtype B. Host MHCII alleles also contributed predictive power to both disease models. Our results also show considerable uncertainty remains, suggesting major causal mechanisms are yet to be discovered.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology, 1695 Pumicestone Road, Toorbul, Queensland, 4510, Australia
| | - Miranda E Vidgen
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.
| |
Collapse
|
10
|
Starnbach MN. Action Needed on Chlamydia Vaccines. Trends Microbiol 2018; 26:639-640. [PMID: 29858127 DOI: 10.1016/j.tim.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
Chlamydia trachomatis is the most common infectious disease in the USA for which the Centers for Disease Control (CDC) collects case reports. Its prevalence in young women is a public health crisis given the threat to their reproductive health. Consequently, development of a vaccine to prevent infection should be prioritized.
Collapse
Affiliation(s)
- Michael N Starnbach
- Harvard Medical School, Microbiology and Immunobiology, 77 Avenue Louis Pasteur, Boston, MA, USA.
| |
Collapse
|
11
|
Grasse M, Rosenkrands I, Olsen A, Follmann F, Dietrich J. A flow cytometry-based assay to determine the phagocytic activity of both clinical and nonclinical antibody samples against Chlamydia trachomatis. Cytometry A 2018. [PMID: 29513398 PMCID: PMC6033180 DOI: 10.1002/cyto.a.23353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Globally, an estimated 131 million new cases of chlamydial infection occur annually. Chlamydia trachomatis infection can cause permanent damage to the fallopian tubes in woman, resulting in infertility and a risk of ectopic pregnancy. There is a great need for a vaccine against Chlamydia trachomatis and as a result there is a need for assays to evaluate functional immune responses for use in future clinical trials and epidemiological studies. Antibodies play a crucial role in the defense against infection and can be protective by several functions, including phagocytosis and neutralization. Vaccine development could greatly benefit from a method to measure functional C. trachomatis‐specific antibodies in a large number of samples. In the current in vitro antibody protection assays, which measure the capacity of antibodies to facilitate phagocytic uptake of C. trachomatis, the phagocytosed bacteria have to be counted manually. This is both labor demanding, time consuming, and it prevents high‐throughput usage of this method. In this study, we, therefore, developed a simple and rapid flow cytometry based assay to measure the capacity of antibodies to mediate Fc‐receptor dependent phagocytosis. This method is highly reproducible and suitable to analyze large numbers of clinical and nonclinical samples. © 2018 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Marco Grasse
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology, Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
12
|
B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4γ13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun 2018; 86:IAI.00614-17. [PMID: 29158429 DOI: 10.1128/iai.00614-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Surveillance and defense of the enormous mucosal interface with the nonsterile world are critical to protecting the host from a wide range of pathogens. Chlamydia trachomatis is an intracellular bacterial pathogen that replicates almost exclusively in the epithelium of the reproductive tract. The fallopian tubes and vagina are poorly suited to surveillance and defense, with limited immune infrastructure positioned near the epithelium. However, a dynamic process during clearing primary infections leaves behind new lymphoid clusters immediately beneath the epithelium. These memory lymphocyte clusters (MLCs) harboring tissue-resident memory (Trm) T cells are presumed to play an important role in protection from subsequent infections. Histologically, human Chlamydia MLCs have prominent B cell populations. We investigated the status of genital tract B cells during C. muridarum infections and the nature of T cells recovered from immune mice using immune B cells as antigen-presenting cells (APCs). These studies revealed a genital tract plasma B cell population and a novel genital tract CD4 T cell subset producing both gamma interferon (IFN-γ) and interleukin-13 (IL-13). A panel of CD4 T cell clones and microarray analysis showed that the molecular fingerprint of CD4γ13 T cells includes a Trm-like transcriptome. Adoptive transfer of a Chlamydia-specific CD4γ13 T cell clone completely prevented oviduct immunopathology without accelerating bacterial clearance. Existence of a CD4γ13 T cell subset provides a plausible explanation for the observation that human peripheral blood mononuclear cell (PBMC) Chlamydia-specific IFN-γ and IL-13 responses predict resistance to reinfection.
Collapse
|
13
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
14
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
15
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review provides an update on the need, development status, and important next steps for advancing development of vaccines against sexually transmitted infections (STIs), including herpes simplex virus (HSV), Neisseria gonorrhoeae (gonorrhea), Chlamydia trachomatis (chlamydia), and Treponema pallidum (syphilis). RECENT FINDINGS Global estimates suggest that more than a million STIs are acquired every day, and many new and emerging challenges to STI control highlight the critical need for development of new STI vaccines. Several therapeutic HSV-2 vaccine candidates are in Phase I/II clinical trials, and one subunit vaccine has shown sustained reductions in genital lesions and viral shedding, providing hope that an effective HSV vaccine is on the horizon. The first vaccine candidate for genital chlamydia infection has entered Phase I trials, and several more are in the pipeline. Use of novel technological approaches will likely see viable vaccine candidates for gonorrhea and syphilis in the future. The global STI vaccine roadmap outlines key activities to further advance STI vaccine development. SUMMARY Major progress is being made in addressing the large global unmet need for STI vaccines. With continued collaboration and support, these critically important vaccines for global sexual and reproductive health can become a reality.
Collapse
|
17
|
Poston TB, Gottlieb SL, Darville T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine 2017; 37:7289-7294. [PMID: 28111145 DOI: 10.1016/j.vaccine.2017.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Genital infection with Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, is the most common bacterial sexually transmitted infection globally. Ascension of chlamydial infection to the female upper genital tract can cause acute pelvic inflammatory disease, tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. Shortcomings of current chlamydia control strategies, especially for low- and middle-income countries, highlight the need for an effective vaccine. Evidence from animal models, human epidemiological studies, and early trachoma vaccine trials suggest that a C. trachomatis vaccine is feasible. Vaccine development for genital chlamydial infection has been in the preclinical phase of testing for many years, but the first Phase I trials of chlamydial vaccine candidates are underway, and scientific advances hold promise for additional candidates to enter clinical evaluation in the coming years. We describe the clinical and public health need for a C. trachomatis vaccine, provide an overview of Chlamydia vaccine development efforts, and summarize current vaccine candidates in the development pipeline.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Russell AN, Zheng X, O'Connell CM, Wiesenfeld HC, Hillier SL, Taylor BD, Picard MD, Flechtner JB, Zhong W, Frazer LC, Darville T. Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection. J Infect Dis 2016; 214:1884-1892. [PMID: 27738051 DOI: 10.1093/infdis/jiw485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Natural infection induces partial immunity to Chlamydia trachomatis Identification of chlamydial antigens that induce interferon γ (IFN-) secretion by T cells from immune women could advance vaccine development. METHODS IFN-γ production by CD4+ and CD8+ peripheral blood T cells from 58 high-risk women was measured after coculture with antigen-presenting cells preincubated with recombinant Escherichia coli expressing a panel of 275 chlamydial antigens. Quantile median regression analysis was used to compare frequencies of IFN-γ responses in women with only cervical infection to those in women with endometrial infection and frequencies in women who remained uninfected for over 1 year to those in women who developed incident infection. Statistical methods were then used to identify proteins associated with protection. RESULTS A higher median frequency of CD8+ T-cell responses was detected in women with lower genital tract chlamydial infection, compared with those with upper genital tract chlamydial infection (13.8% vs 9.5%; P =04), but the CD4+ T-cell response frequencies were not different. Women who remained uninfected displayed a greater frequency of positive CD4+ T-cell responses (29% vs 18%; P < .0001), compared with women who had incident infection, while the frequencies of CD8+ T-cell responses did not differ. A subset of proteins involved in central metabolism, type III secretion, and protein synthesis were associated with protection. CONCLUSIONS Investigations in naturally exposed women reveal protective responses and identify chlamydial vaccine candidate antigens.
Collapse
Affiliation(s)
| | | | | | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pennsylvania
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pennsylvania
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, College Station
| | | | | | - Wujuan Zhong
- Department of Biostatistics, University of North Carolina-Chapel Hill
| | | | | |
Collapse
|
19
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|