1
|
Seronegative MSM at high risk of HIV-1 acquisition show an immune quiescent profile with a normal immune response against common antigens. PLoS One 2022; 17:e0277120. [PMID: 36480500 PMCID: PMC9731495 DOI: 10.1371/journal.pone.0277120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection still represents a major public health problem worldwide, and its vaccine remains elusive. The study of HIV-exposed seronegative individuals (HESN) brings important information about the natural resistance to HIV, allows a better understanding of the infection, and opens doors for new preventive and therapeutic strategies. Among HESN groups, there are some men who have sex with men (MSM) with high-risk sexual behaviors, who represent an adequate cohort for HESN study because of their major HIV exposure without infection. This study aimed to compare the immunological profile of Colombian seronegative MSM with different risk sexual behaviors. This study included 60 MSM at high-risk (n = 16) and low-risk (n = 44) of HIV-1 acquisition. No sex worker nor homozygous delta 32 mutation subjects were included. All participants were negative for anti-HIV-1/2 antibodies and HIV-1 proviral DNA. A higher frequency of sexual partners in the last 3 months before the study participation (median, 30 vs. 2), lifetime sexual partners (median, 1,708 vs. 26), and unprotected anal intercourse (median 12.5 vs. 2) was determined in high-risk MSM than low-risk MSM. High-risk MSM also showed a quiescent profile of T cells and natural killer (NK) cells, with a significantly lower percentage of CD4+CD38+, CD4+HLADR-CD38+, CD4+Ki67+ T cells, and NKG2D+ NK cells (CD3-CD16+CD56+), a significantly higher percentage of CD4+HLADR-CD38-, and a tendency to show a higher percentage of CD8+HLADR+CD38- T cells than the low-risk group. Likewise, they showed higher mRNA levels of Serpin A1 from PBMCs. The results suggest that this MSM cohort could be HESN individuals and their resistance would be explained by a quiescent profile of T cells and NK cells and an increased Serpin A1 expression. Further study on MSM at high risk of exposure to HIV-1 is necessary to better understand the natural resistance to HIV.
Collapse
|
2
|
Munusamy Ponnan S, Thiruvengadam K, Kathirvel S, Shankar J, Rajaraman A, Mathaiyan M, Dinesha TR, Poongulali S, Saravanan S, Murugavel KG, Swaminathan S, Tripathy SP, Neogi U, Velu V, Hanna LE. Elevated Numbers of HIV-Specific Poly-Functional CD8 + T Cells With Stem Cell-Like and Follicular Homing Phenotypes in HIV-Exposed Seronegative Individuals. Front Immunol 2021; 12:638144. [PMID: 33889151 PMCID: PMC8056154 DOI: 10.3389/fimmu.2021.638144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-specific CD8+ T cells are known to play a key role in viral control during acute and chronic HIV infection. Although many studies have demonstrated the importance of HIV-specific CD8+ T cells in viral control, its correlation with protection against HIV infection remains incompletely understood. To better understand the nature of the immune response that contributes to the early control of HIV infection, we analyzed the phenotype, distribution and function of anti-viral CD8+ T cells in a cohort of HIV-exposed seronegative (HESN) women, and compared them with healthy controls and HIV-infected individuals. Further, we evaluated the in vitro viral inhibition activity of CD8+ T cells against diverse HIV-1 strains. We found that the HESN group had significantly higher levels of CD8+ T cells that express T-stem cell-like (TSCM) and follicular homing (CXCR5+) phenotype with more effector like characteristics as compared to healthy controls. Further, we observed that the HESN population had a higher frequency of HIV-specific poly-functional CD8+ T cells with robust in vitro virus inhibiting capacity against different clades of HIV. Overall, our results demonstrate that the HESN population has elevated levels of HIV-specific poly-functional CD8+ T cells with robust virus inhibiting ability and express elevated levels of markers pertaining to TSCM and follicular homing phenotype. These results demonstrate that future vaccine and therapeutic strategies should focus on eliciting these critical CD8+ T cell subsets.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India.,Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Kannan Thiruvengadam
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sujitha Kathirvel
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Janani Shankar
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Akshaya Rajaraman
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Manikannan Mathaiyan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | | | - Selvamuthu Poongulali
- Chennai Antiviral Research and Treatment Centre and Clinical Research Site (CART CRS), Infectious Diseases Medical Center, Voluntary Health Services (VHS), Chennai, India
| | | | | | - Soumya Swaminathan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Srikanth Prasad Tripathy
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
3
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
4
|
Jaumdally SZ, Picton A, Tiemessen CT, Paximadis M, Jaspan HB, Gamieldien H, Masson L, Coetzee D, Williamson AL, Little F, Gumbi PP, Passmore JAS. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships. Immunology 2017; 151:464-473. [PMID: 28398593 DOI: 10.1111/imm.12743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022] Open
Abstract
Several host factors have been implicated in resistance to HIV infection in individuals who remain HIV-seronegative despite exposure. In a cohort of HIV-serodiscordant heterosexual couples, we investigated interactions between systemic inflammation and T-cell activation in resistance to HIV infection. Males and females in stable long-term relationships with either HIV-infected or uninfected partners were recruited, blood T-cell activation (CD38, HLA-DR, CCR5 and Ki67) and plasma cytokine concentrations were evaluated. The HIV-negative exposed individuals had significantly lower frequencies of CCR5+ CD4+ and CD8+ T cells than unexposed individuals. Mean fluorescence intensity of CCR5 expression on CD4+ T cells was significantly lower in HIV-negative exposed than unexposed individuals. Protective CCR5 haplotypes (HHA/HHF*2, HHF*2/HHF*2, HHC/HHF*2, HHA/HHA, HHA/HHC and HHA/HHD) tended to be over-represented in exposed compared with unexposed individuals (38% versus 28%, P = 0·58) whereas deleterious genotypes (HHC/HHD, HHC/HHE, HHD/HHE, HHD/HHD and HHE/HHE) were under-represented (26% versus 44%; P = 0·16). Plasma concentrations of interleukin-2 (P = 0·02), interferon-γ (P = 0·05) and granulocyte-macrophage colony-stimulating factor (P = 0·006) were lower in exposed compared with unexposed individuals. Activation marker expression and systemic cytokine concentrations were not influenced by gender. We conclude that the dominant signature of resistance to HIV infection in this cohort of exposed but uninfected individuals was lower T-cell CCR5 expression and plasma cytokine concentrations.
Collapse
Affiliation(s)
- Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Anabela Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - David Coetzee
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Pamela P Gumbi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
5
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
6
|
Pattacini L, Murnane PM, Kahle EM, Bolton MJ, Delrow JJ, Lingappa JR, Katabira E, Donnell D, McElrath MJ, Baeten JM, Lund JM. Differential regulatory T cell activity in HIV type 1-exposed seronegative individuals. AIDS Res Hum Retroviruses 2013; 29:1321-9. [PMID: 23815575 DOI: 10.1089/aid.2013.0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The potential role of conventional and regulatory T cells (Tregs) in protection from HIV-1 infection remains unclear. To address this question, we analyzed samples from 129 HIV-1-exposed seronegative individuals (HESN) from an HIV-1-serodiscordant couples cohort. To assess the presence of HIV-specific T cell responses and Treg function, we measured the proliferation of T cells in response to HIV-1 peptide pools in peripheral blood mononuclear cells (PBMCs) and PBMCs depleted of Tregs. We identified HIV-specific CD4(+) and CD8(+) T cell responses and, surprisingly, the overall CD4(+) and CD8(+) T cell response rate was not increased when Tregs were removed from cell preparations. Of the 20 individuals that had HIV-1-specific CD4(+) T cell responses, only eight had Tregs that could suppress this proliferation. When compared with individuals whose Tregs could suppress HIV-1-specific CD4(+) T cell proliferation, individuals with Tregs unable to suppress showed a trend toward increased T cell activation and Treg frequency and a significant increase in HIV-1-specific production of microphage inflammatory protein-1β (MIP-1β) by CD4(+) T cells, autocrine production of which has been shown to be protective in terms of HIV-1 infection of CD4(+) T cells.
Collapse
Affiliation(s)
- Laura Pattacini
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Pamela M. Murnane
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Erin M. Kahle
- Department of Global Health, University of Washington, Seattle, Washington
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Michael J. Bolton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeffrey J. Delrow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Deborah Donnell
- Department of Global Health, University of Washington, Seattle, Washington
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J 2011; 5:35-43. [PMID: 21660188 PMCID: PMC3109745 DOI: 10.2174/1874357901105010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with Human immunodeficiency virus type-1 (HIV-1) induces severe alterations of the immune system leading to an increased susceptibility to opportunistic infections and malignancies. However, exposure to the virus does not always results in infection. Indeed, there exist individuals who have been repeatedly exposed to HIV-1 but do not exhibit clinical or serological evidence of infection, known as exposed seronegative individuals. Many studies have focused on the different mechanisms involved in natural resistance to HIV-1 infection, and have reported several factors associated with this phenomenon, including the presence of genetic polymorphisms in the viral coreceptors, innate and adaptive immune cells with particular phenotypic and functional features, and molecules such as antibodies and soluble factors that play an important role in defense against infection by HIV-1. The study of these factors could be the key for controlling this viral infection. This review summarizes the main mechanisms involved in resistance to HIV-1 infection.
Collapse
|
8
|
Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol 2011; 164:158-69. [PMID: 21413945 DOI: 10.1111/j.1365-2249.2011.04379.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The description of highly exposed individuals who remain seronegative (HESN) despite repeated exposure to human immunodeficiency virus (HIV)-1 has heightened interest in identifying potential mechanisms of HIV-1 resistance. HIV-specific humoral and T cell-mediated responses have been identified routinely in HESN subjects, although it remains unknown if these responses are a definitive cause of protection or merely a marker for exposure. Approximately half of HESN lack any detectible HIV-specific adaptive immune responses, suggesting that other mechanisms of protection from HIV-1 infection also probably exist. In support of the innate immune response as a mechanism of resistance, increased natural killer (NK) cell activity has been correlated with protection from infection in several high-risk cohorts of HESN subjects, including intravenous drug users, HIV-1 discordant couples and perinatally exposed infants. Inheritance of protective NK KIR3DL1(high) and KIR3DS1 receptor alleles have also been observed to be over-represented in a high-risk cohort of HESN intravenous drug users and HESN partners of HIV-1-infected subjects. Other intrinsic mechanisms of innate immune protection correlated with resistance in HESN subjects include heightened dendritic cell responses and increased secretion of anti-viral factors such as β-chemokines, small anti-viral factors and defensins. This review will highlight the most current evidence in HESN subjects supporting the role of epithelial microenvironment and the innate immune system in sustaining resistance against HIV-1 infection. We will argue that as a front-line defence the innate immune response determines the threshold of infectivity that HIV-1 must overcome to establish a productive infection.
Collapse
Affiliation(s)
- C Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | | |
Collapse
|
9
|
Restrepo C, Rallón NI, del Romero J, Rodríguez C, Hernando V, López M, Peris A, Lozano S, Sempere-Ortells JM, Soriano V, Benito JM. Low-level exposure to HIV induces virus-specific T cell responses and immune activation in exposed HIV-seronegative individuals. THE JOURNAL OF IMMUNOLOGY 2010; 185:982-9. [PMID: 20543099 DOI: 10.4049/jimmunol.1000221] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-specific T cells response and T cell activation are frequently seen in exposed seronegative individuals (ESN). In this study, we report HIV-specific response and level of T cell activation in ESN partners of HIV-infected patients presenting low or undetectable levels of HIV-RNA. We evaluated 24 HIV-serodiscordant couples. ESN were classified into three categories of exposure to HIV (very low, low, and moderate-high), considering levels of HIV-RNA in their infected partner and frequency of sexual high-risk practices within the last 12 mo. HIV-specific T cell responses and activation levels in T cell subsets were evaluated by flow cytometry. We reported that 54% of ESN had detectable HIV-specific T cells response, being the highest prevalence seen in the low exposure group (64%). Several T cell subsets were significantly increased in ESN when compared with controls: CD4(+)CD38(+) (p = 0.006), CD4(+)HLA-DR(-)CD38(+) (p = 0.02), CD4(+)CD45RA(+)CD27(+)HLA-DR(-)CD38(+) (p = 0.002), CD8(+)CD45RA(+)CD27(+)CD38(-)HLA-DR(+) (p = 0.02), and CD8(+)CD45RA(+)CD27(-)CD38(+)HLA-DR(+) (p = 0.03). Activation of CD8(+) T cells was increased in ESN with detectable HIV T cell responses compared with ESN lacking these responses (p = 0.04). Taken together, these results suggest that persistent but low sexual HIV exposure is able to induce virus-specific T cells response and immune activation in a high proportion of ESN, suggesting that virus exposure may occur even in conditions of maximal viral suppression in the HIV-infected partner.
Collapse
Affiliation(s)
- Clara Restrepo
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cummings JS, Cairo C, Armstrong C, Davis CE, Pauza CD. Impacts of HIV infection on Vgamma2Vdelta2 T cell phenotype and function: a mechanism for reduced tumor immunity in AIDS. J Leukoc Biol 2008; 84:371-9. [PMID: 18495780 DOI: 10.1189/jlb.1207847] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV infection causes rapid and lasting defects in the population of Vgamma2Vdelta2 T cells. To fully describe the impact of HIV, we examined PBMC samples from HIV+ patients receiving highly active antiretroviral therapy, who had displayed prolonged viral control and CD4 counts above 300 cells/mm3. We observed lower frequencies of CD27-/CD45RA- Vgamma2Vdelta2 cells in HIV+ individuals when compared with controls, coupled with an increased proportion of CD45RA+ cells. These changes were common among 24 HIV+ patients and were not related to CD4 cell count or viral RNA burden. Vgamma2 cells from HIV+ individuals had lower expression of Granzyme B and displayed reduced cytotoxicity against Daudi targets after in vitro stimulation. There was increased expression of FasR (CD95) on Vgamma2 cells from HIV+ PBMC that may be a mechanism for depletion of Vgamma2 cells during disease. In addition to the well-characterized defects in the Vgamma2 repertoire and functional responses to phosphoantigen, the proportion of CD27-/CD45RA- Vgamma2Vdelta2 T cells after isopentenyl pyrophosphate stimulation was reduced sharply in HIV+ donors versus controls. Thus, HIV infection has multiple impacts on the circulating Vgamma2Vdelta2 T cell population that combine to reduce the potential effector activity in terms of tumor cytotoxicity. Changes in Vgamma2Vdelta2 T cells, along with concomitant effects on NK and NKT cells that also contribute to tumor surveillance, may be important factors for elevating the risk of malignancy during AIDS.
Collapse
Affiliation(s)
- Jean-Saville Cummings
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard St., N546, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|