1
|
TonB-dependent receptor epitopes expressed in M. bovis BCG induced significant protection in the hamster model of leptospirosis. Appl Microbiol Biotechnol 2021; 106:173-184. [PMID: 34893930 PMCID: PMC8664668 DOI: 10.1007/s00253-021-11726-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022]
Abstract
Abstract
Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. A universal vaccine against leptospirosis is likely to require highly conserved epitopes from pathogenic leptospires that are exposed on the bacterial surface and that generate a protective and sterilizing immune response. Our group recently identified several genes predicted to encode TonB-dependent receptors (TBDR) in Leptospira interrogans using a reverse vaccinology approach. Three leptospiral TBDRs were previously described and partially characterized as ferric-citrate, hemin, and cobalamin transporters. In the current study, we designed a fusion protein composed of predicted surface-exposed epitopes from three conserved leptospiral TBDRs. Based on their three-dimensional structural models and the prediction of immunogenic regions, nine putative surface-exposed fragments were selected to compose a recombinant chimeric protein. A Mycobacterium bovis BCG strain expressing this chimeric antigen encoded in the pUP500/PpAN mycobacterial expression vector was used to immunize Syrian hamsters. All animals (20/20) vaccinated with recombinant BCG survived infection with an endpoint dose of L. interrogans (p < 0.001). No animal survived in the negative control group. Immunization with our recombinant BCG elicited a humoral immune response against leptospiral TBDRs, as demonstrated by ELISA and immunoblot. No leptospiral DNA was detected by lipL32 qPCR in the kidneys of vaccinated hamsters. Similarly, no growth was observed in macerated kidney cultures from the same animals, suggesting the induction of a sterilizing immune response. Design of new vaccine antigens based on the structure of outer membrane proteins is a promising approach to overcome the impact of leptospirosis by vaccination. Key points • Predicted surface-exposed epitopes were identified in three leptospiral TBDRs. • An M. bovis BCG strain expressing a chimeric protein (rTBDRchi) was constructed. • Hamsters vaccinated with rBCG:TBDRchi were protected from lethal leptospirosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11726-9.
Collapse
|
2
|
JIA YC, CHEN X, ZHOU YY, YAN P, GUO Y, YIN RL, YUAN J, WANG LX, WANG XZ, YIN RH. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13. J Vet Med Sci 2021; 83:1500-1508. [PMID: 34393140 PMCID: PMC8569868 DOI: 10.1292/jvms.21-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) has been one of the bacteria affecting the large-scale swine industry. Lack of an effective vaccine has limited control of the disease, which has an effect on prevalence. In order to improve the cross-protection of vaccines, development on subunit vaccines has become a hot spot. In this study, we firstly cloned the lpxC and gmhA genes from G. parasuis serotype 13 isolates, and expressed and purified their proteins. The results showed that LpxC and GmhA can stimulate mice to produce IgG antibodies. Through testing the cytokine levels of interleukin 4 (IL-4), IL-10 and interferon-γ (IFN-γ), it is found that recombinant GmhA, the mixed LpxC and GmhA can stimulate the body to produce Th1 and Th2 immune responses, while recombinant LpxC and inactivated bacteria can only produce Th2 immune responses. On the protection rate for mice, recombinant LpxC, GmhA and the mixture of LpxC and GmhA can provide 50%, 50% and 60% protection for lethal dose of G. parasuis infection, respectively. The partial protection achieved by the recombinant LpxC and GmhA supports their potential as novel vaccine candidate antigens against G. parasuis.
Collapse
Affiliation(s)
- Yong C. JIA
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin CHEN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Y. ZHOU
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ping YAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Ying GUO
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Rong L. YIN
- Research Academy of Animal Husbandry and Veterinary Medicine
Sciences of Jilin Province, Changchun 130062, China
| | - Jing YUAN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Lin X. WANG
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Z. WANG
- Liaoning Agricultural Technical College, Yingkou, 115009,
China
| | - Rong H. YIN
- Key Laboratory of Livestock Infectious Diseases in Northeast
China, Ministry of Education, College of Animal Science & Veterinary Medicine,
Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Zhu K, Yu D, An J, Li Y. Characterization and protective activity of monoclonal antibodies directed against Fe (3+) ABC transporter substrate-binding protein of Glaesserella parasuis. Vet Res 2021; 52:100. [PMID: 34225787 PMCID: PMC8256651 DOI: 10.1186/s13567-021-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Glässer's disease is caused by the agent Glaesserella parasuis and is difficult to prevent and control. Candidate screening for subunit vaccines contributes to the prevention of this disease. Therefore, in this study, the inactivated G. parasuis reference serovar 5 strain (G. parasuis-5) was used to generate specific monoclonal antibodies (mAbs) to screen subunit vaccine candidates. Six mAbs (1A12, 3E3, 4C6, 2D1, 3E6, and 4B2) were screened, and they all reacted with the G. parasuis serovar 5 strain according to laser confocal microscopy and flow cytometry (FCM). Indirect enzyme-linked immunosorbent assay (ELISA) showed that one mAb 2D1, can react with all 15 reference serovars of G. parasuis. Protein mass spectrometry and Western blot analysis demonstrated that mAb 2D1 specifically reacts with Fe (3+) ABC transporter substrate-binding protein. A complement killing assay found that the colony numbers of bacteria were significantly reduced in the G. parasuis-5 group incubated with mAb 2D1 (p < 0.01) in comparison with the control group. Opsonophagocytic assays demonstrated that mAb 2D1 significantly enhanced the phagocytosis of 3D4/21 cells by G. parasuis (p < 0.05). RAW264.7 cells with stronger phagocytic ability were also used for the opsonophagocytic assay, and the difference was highly significant (p < 0.01). Passive immunization of mice revealed that mAb 2D1 can eliminate the bacteria in the blood and provide protection against G. parasuis-5. Our study found one mAb that can be used to prevent and control G. parasuis infection in vivo and in vitro, which may suggest that Fe (3+) ABC transporter substrate-binding protein is an immunodominant antigen and a promising candidate for subunit vaccine development.
Collapse
Affiliation(s)
- Kexin Zhu
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yu
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui An
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Jia Y, Hao C, Yang Q, Zhang W, Li G, Liu S, Hua X. Inhibition of Haemophilus parasuis by berberine and proteomic studies of its mechanism of action. Res Vet Sci 2021; 138:62-68. [PMID: 34111715 DOI: 10.1016/j.rvsc.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Haemophilus parasuis is the main agent of Glässer's disease, which causes substantial losses in pig production. However, the pathogenic mechanism and virulence factors of H. parasuis have not been fully determined. In this study, berberine is shown to have a good therapeutic effect in vivo against H. parasuis; the minimal inhibitory concentration (MIC) in vitro was 2 μg/mL. Berberine inhibited H. parasuis adhesion to and invasion of PK-15 pig kidney cells. Proteomics studies of H. parasuis after berberine treatment identified a total of 97 differentially-expressed proteins; 35 upregulated and 62 downregulated. Bioinformatics analysis showed that berberine may inhibit the growth of H. parasuis by affecting outer membrane proteins, transferrins, and energy metabolism. This study provides a basis for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yue Jia
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; College of Animal Science and Technology, Jilin Agricultural University, China
| | - Changqi Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, China; College of Life Science, Northeast Forestry University, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, China; College of Life Science, Northeast Forestry University, China.
| |
Collapse
|
5
|
Hau SJ, Eberle KC, Brockmeier SL. Importance of strain selection in the generation of heterologous immunity to Glaesserella (Haemophilus) parasuis. Vet Immunol Immunopathol 2021; 234:110205. [PMID: 33636545 DOI: 10.1016/j.vetimm.2021.110205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/01/2023]
Abstract
Glaesserella (Haemophilus) parasuis is a part of the microbiota of healthy pigs and also causes the systemic condition called Glässer's disease. G. parasuis is categorized by it capsular polysaccharide into 15 serovars. Because of the serovar and strain specific immunity generated by whole cell vaccines and the rapid onset of disease, G. parasuis has been difficult to control in the swine industry. This report investigated the protection afforded by the use of two serovar 5 isolates (Nagasaki and HS069) as whole cell, killed bacterins against homologous challenge and heterologous challenge with the serovar 1 strain 12939 to better understand bacterin generated immunity. Both bacterins induced a high antibody titer to the vaccine strain and the heterologous challenge strain. Protection was seen with both bacterins against homologous challenge; however, after heterologous challenge, the HS069 bacterin provided complete protection and all Nagasaki bacterin vaccinated animals succumbed to disease. The difference in protection appears to be due to differences in antibody specificity and the capacity of induced antibody to fix complement and opsonize G. parasuis, as shown by Western blotting and functional assays. This report shows the importance of strain selection when developing bacterin vaccines, as some strains are better able to generate heterologous protection. The difference in protection seen here can also be utilized to detect proteins of interest for subunit vaccine development.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Kirsten C Eberle
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Susan L Brockmeier
- National Animal Disease Center, ARS, USDA, 1920 Dayton Ave, Ames, IA, 50010, United States.
| |
Collapse
|
6
|
Sen-Kilic E, Blackwood CB, Boehm DT, Witt WT, Malkowski AC, Bevere JR, Wong TY, Hall JM, Bradford SD, Varney ME, Damron FH, Barbier M. Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia. Front Immunol 2019; 10:2497. [PMID: 31708925 PMCID: PMC6819369 DOI: 10.3389/fimmu.2019.02497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shelby D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Fredrick Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
7
|
Li M, Cai RJ, Song S, Jiang ZY, Li Y, Gou HC, Chu PP, Li CL, Qiu HJ. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PLoS One 2017; 12:e0176537. [PMID: 28448603 PMCID: PMC5407842 DOI: 10.1371/journal.pone.0176537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Glässer’s disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.
Collapse
Affiliation(s)
- Miao Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Ru-Jian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Zhi-Yong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Hong-Chao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Pin-Pin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Chun-Ling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- * E-mail: (CL); (HQ)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (CL); (HQ)
| |
Collapse
|
8
|
Omp16-based vaccine encapsulated by alginate-chitosan microspheres provides significant protection against Haemophilus parasuis in mice. Vaccine 2017; 35:1417-1423. [PMID: 28187951 DOI: 10.1016/j.vaccine.2017.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Haemophilus parasuis (H. parasuis) is the etiological agent of swine Glässer's disease, which leads to significant economic loss in swine industry over the world. Subunit vaccine based on outer membrane protein is one of the promising choices to protect pigs against H. parasuis infection despite low immunity efficiency. In this paper, outer membrane protein 16 (Omp16) of H. parasuis encapsulated by alginate-chitosan microspheres as antigen carriers was explored for the first time in a mouse model. Our results showed that the microspheres with Omp16 induced significant higher H. parasuis-specific antibodies, and higher titers of IL-2, IL-4, and IFN-γ than those by Omp16-FIA in treated mice (p<0.05). Moreover, H. parasuis load in the tissues from liver, spleen, and lung of mice immunized with microspheres containing Omp16 was significantly decreased (p<0.05) than that in the same counterpart tissues of control groups. In addition, 80% mice treated with Omp16 and 70% mice with Omp16-FIA were survived after challenged with H. parasuis virulent strain LY02 (serovar 5). Therefore, Omp16-based microsphere vaccine induces both humoral and cellular immune responses and provides promising protection against H. parasuis infection in mice.
Collapse
|
9
|
Zhao Z, Liu H, Xue Y, Chen K, Liu Z, Xue Q, Wang C. Analysis of efficacy obtained with a trivalent inactivated Haemophilus parasuis serovars 4, 5, and 12 vaccine and commercial vaccines against Glässer's disease in piglets. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:22-27. [PMID: 28154458 PMCID: PMC5220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to assess the efficacy of a trivalent inactivated Haemophilus parasuis serovars 4, 5, and 12 vaccine with polymeric adjuvant gel (GEL) and commercial vaccines against Glässer's disease in piglets. Commercial vaccines containing inactivated H. parasuis serovars 4 and 5 (China), inactivated H. parasuis serovars 1 and 6 (Spain), and inactivated H. parasuis serovar 5 (USA) were also evaluated. Our results demonstrated that the trivalent inactivated H. parasuis serovars 4, 5, and 12 vaccine with GEL adjuvant can provide better protection against the 3 most common pathogenic serovars circulating in China than other commercial vaccines tested. Our findings also indicated that inactivated H. parasuis serovars 1 and 6 vaccine cross-protects piglets against H. parasuis serovars 4 and 5; inactivated H. parasuis serovar 5 vaccine cross-protects piglets against H. parasuis serovar 4 challenge; but none of the commercial vaccines tested in this study protected piglets against H. parasuis serovar 12. Our results provide a basis for further identification of common protective antigens that can induce cross-protection against heterogeneous serovars.
Collapse
Affiliation(s)
| | | | - Yun Xue
- Address all correspondence to Dr. Yun Xue; tel.: 86 136 3379 9373; e-mail:
| | | | | | | | | |
Collapse
|
10
|
Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol 2016; 180:53-58. [DOI: 10.1016/j.vetimm.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
|
11
|
Zhao Z, Liu H, Zhang K, Xue Q, Chen K, Xue Y. Minimum dose, antigen content, and immunization duration of a trivalent vaccine of inactivated Haemophilus parasuis serovars 4, 5, and 12 against Glässer's disease in pigs. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:287-293. [PMID: 27733783 PMCID: PMC5052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to assess the minimum dose, antigen content, and immunization duration of a trivalent vaccine containing inactivated Haemophilus parasuis serovars 4, 5, and 12 and the Montanide GEL 01 PR adjuvant in piglets and pregnant sows. Our results demonstrated that the minimum vaccine dose was 2 mL per pig and the optimal antigen content 2.0 × 109, 1.0 × 109, and 1.0 × 109 colony-forming units/mL of serovars 4, 5, and 12, respectively. The vaccine provided effective protection 14 d after the 2nd vaccination, and the period of immune protection was 180 d (6 mo) after the 2nd vaccination. Maternal antibodies provided early protection for the piglets, and vaccinating the sows before farrowing helped to control disease and protected the piglets during lactation; the piglets were protected during the finishing period by being vaccinated during lactation. Our findings provide a basis for developing a commercial trivalent vaccine of inactivated H. parasuis serovars 4, 5, and 12 against Glässer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Xue
- Address all correspondence to Dr. Yun Xue; telephone: +86-13633799373; e-mail:
| |
Collapse
|
12
|
Molecular analysis of lungs from pigs immunized with a mutant transferrin binding protein B-based vaccine and challenged with Haemophilus parasuis. Comp Immunol Microbiol Infect Dis 2016; 48:69-78. [PMID: 27638122 DOI: 10.1016/j.cimid.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022]
Abstract
The molecular analysis of pigs vaccinated with a mutant transferrin-binding protein B (Y167A) from Haemophilus parasuis was compared with that performed for unvaccinated challenged (UNCH) and unvaccinated unchallenged (UNUN) pigs. Microarray analysis revealed that UNCH group showed the most distinct expression profile for immune response genes, mainly for those genes involved in inflammation or immune cell trafficking. This fact was confirmed by real-time PCR, in which the greatest level of differential expression from this group were CD14, CD163, IL-8 and IL-12. In Y167A group, overexpressed genes included MAP3K8, CD14, IL-12 and CD163. Proteomics revealed that collagen α-1 and peroxiredoxins 2 and 6 were overexpressed in Y167A pigs. Our study reveals new data on genes and proteins involved in H. parasuis infection and several candidates of resistance to infection that are induced by Y167A vaccine. The expression of proinflammatory molecules from Y176A pigs is similar to their expression in UNUN pigs.
Collapse
|
13
|
Li M, Li C, Song S, Kang H, Yang D, Li G. Development and antigenic characterization of three recombinant proteins with potential for Glässer's disease prevention. Vaccine 2016; 34:2251-8. [PMID: 26993332 DOI: 10.1016/j.vaccine.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which causes high morbidity and mortality in piglets, leading to severe economic losses. The lack of a commercial vaccine against a broad spectrum of strains has limited the disease control. H. parasuis outer membrane proteins (OMPs) are potentially essential components for vaccine formulation. In this study, seven putative OMPs were selected from the annotated H. parasuis serovar 5 genome; they were predicted by bioinformatics and annotated as potential virulence-related factors. These proteins were cloned, expressed, and purified as His-tagged proteins. Antigenicity of the candidate proteins was assessed using Western blotting with convalescent sera against H. parasuis serovar 5. The immunogenicity of the seven OMPs was assessed in a guinea pig model. Except VacJ, all the other six recombinant proteins elicited a detectable antibody response. Antisera against four of the selected proteins effectively killed the bacteria in vitro. Three proteins (Omp26, VacJ, and HAPS_0742) were found to confer significant protection against challenge with a lethal dose of H. parasuis in a guinea pig model. The results suggest that these three proteins have a strong potential to be vaccine candidates against Glässer's disease.
Collapse
Affiliation(s)
- Miao Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China.
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Huahua Kang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Public Laboratory of Veterinary Public Health of Guangdong Province, Guangzhou 510640, Guangdong, China; Guangdong Key Laboratory of Animal Epidemic Diseases Prevention, Guangzhou 510640, Guangdong, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
14
|
Protective Efficacy of an Inactive Vaccine Based on the LY02 Isolate against Acute Haemophilus parasuis Infection in Piglets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:649878. [PMID: 26688815 PMCID: PMC4672103 DOI: 10.1155/2015/649878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.
Collapse
|
15
|
First comparison of adjuvant for trivalent inactivated Haemophilus parasuis serovars 4, 5 and 12 vaccines against Glässer's disease. Vet Immunol Immunopathol 2015; 168:153-8. [DOI: 10.1016/j.vetimm.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
|
16
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 2015; 109:51-70. [PMID: 26494209 DOI: 10.1007/s10482-015-0609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
17
|
Zhang L, Li Y, Dai K, Wen X, Wu R, Huang X, Jin J, Xu K, Yan Q, Huang Y, Ma X, Wen Y, Cao S. Establishment of a Successive Markerless Mutation System in Haemophilus parasuis through Natural Transformation. PLoS One 2015; 10:e0127393. [PMID: 25985077 PMCID: PMC4436007 DOI: 10.1371/journal.pone.0127393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis, belonging to the family Pasteurellaceae, is the causative agent of Glässer's disease leading to serious economic losses. In this study, a successive markerless mutation system for H. parasuis using two sequential steps of natural transformation was developed. By the first homologous recombination, the target genes were replaced by a cassette carrying kanamycin resistance gene and sacB (which confers sensitivity to sucrose) gene using kanamycin selection, followed by the second reconstruction to remove the selection cassette, with application of sucrose to further screen unmarked mutants. To improve DNA transformation frequency, several parameters have been analyzed further in this work. With this method, two unmarked deletions in one strain have been generated successfully. It is demonstrated that this system can be employed to construct multi-gene scarless deletions, which is of great help for developing live attenuated vaccines for H. parasuis.
Collapse
Affiliation(s)
- Luhua Zhang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ying Li
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ke Dai
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xintian Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Wu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaobo Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jin Jin
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Kui Xu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qigui Yan
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoping Ma
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yiping Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| | - Sanjie Cao
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| |
Collapse
|
18
|
Li M, Song S, Yang D, Li C, Li G. Identification of secreted proteins as novel antigenic vaccine candidates of Haemophilus parasuis serovar 5. Vaccine 2015; 33:1695-701. [DOI: 10.1016/j.vaccine.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
19
|
Shivachandra SB, Yogisharadhya R, Kumar A, Mohanty NN, Nagaleekar VK. Recombinant transferrin binding protein A (rTbpA) fragments of Pasteurella multocida serogroup B:2 provide variable protection following homologous challenge in mouse model. Res Vet Sci 2014; 98:1-6. [PMID: 25544697 DOI: 10.1016/j.rvsc.2014.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Transferrin binding protein A (TbpA), an iron acquisition surface protein that also acts as virulence factor, is widely distributed among strains of Pasteurella multocida. In the present study, a total of seven clones of TbpA fragments (39D to F777; 39D to Q697; 188V to F777; 188V to Q697; 39D to P377; 188V to P377 and 39D to F187) belonging to P. multocida B:2 were constructed, over-expressed and purified as recombinant fusion proteins from Escherichia coli using affinity chromatography. Immunization of mice with rTbpA fragments resulted in a significant (p < 0.05) rise in antigen specific serum total IgG and subtypes (IgG1 and IgG2a) tires. All immunized mice challenged with 8 LD50 of P. multocida B:2 resulted in a variable protective efficacy up to 50%. The study indicated the potential possibilities to incorporate full length TbpA in subunit vaccine formulation composed of synergistic subunit antigens against haemorrhagic septicaemia (HS) in cattle and buffalo.
Collapse
Affiliation(s)
- Sathish Bhadravati Shivachandra
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India.
| | - Revanaiah Yogisharadhya
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru-560024, Karnataka, India
| | - Abhinendra Kumar
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Nihar Nalini Mohanty
- Clinical Bacteriology Laboratory, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Viswas Konasagara Nagaleekar
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| |
Collapse
|