1
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Meier CS, Pagni M, Richard S, Mühlethaler K, Almeida JMGCF, Nevez G, Cushion MT, Calderón EJ, Hauser PM. Fungal antigenic variation using mosaicism and reassortment of subtelomeric genes' repertoires. Nat Commun 2023; 14:7026. [PMID: 37919276 PMCID: PMC10622565 DOI: 10.1038/s41467-023-42685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surface antigenic variation is crucial for major pathogens that infect humans. To escape the immune system, they exploit various mechanisms. Understanding these mechanisms is important to better prevent and fight the deadly diseases caused. Those used by the fungus Pneumocystis jirovecii that causes life-threatening pneumonia in immunocompromised individuals remain poorly understood. Here, though this fungus is currently not cultivable, our detailed analysis of the subtelomeric sequence motifs and genes encoding surface proteins suggests that the system involves the reassortment of the repertoire of ca. 80 non-expressed genes present in each strain, from which single genes are retrieved for mutually exclusive expression. Dispersion of the new repertoires, supposedly by healthy carrier individuals, appears very efficient because identical alleles are observed in patients from different countries. Our observations reveal a unique strategy of antigenic variation. They also highlight the possible role in genome rearrangements of small imperfect mirror sequences forming DNA triplexes.
Collapse
Affiliation(s)
- Caroline S Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - João M G C F Almeida
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
- Infections respiratoires fongiques (IFR), Université d'Angers, Université de Brest, Brest, France
| | - Melanie T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH, 45220, USA
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocίo/Consejo Superior de Investigaciones Cientίficas/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiologίa y Salud Pública, Servicio de Medicina Interna, Hospital Universitario Virgen del Rocίo, Departamento de Medicina, Facultad de Medicina, Seville, Spain
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Rojas DA, Urbina F, Solari A, Maldonado E. RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro. Int J Mol Sci 2022; 23:ijms23126865. [PMID: 35743306 PMCID: PMC9225179 DOI: 10.3390/ijms23126865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The Pneumocystis genus is an opportunistic fungal pathogen that infects patients with AIDS and immunocompromised individuals. The study of this fungus has been hampered due to the inability to grow it in a (defined media/pure) culture. However, the use of modern molecular techniques and genomic analysis has helped researchers to understand its complex cell biology. The transcriptional process in the Pneumocystis genus has not been studied yet, although it is assumed that it has conventional transcriptional machinery. In this work, we have characterized the function of the RNA polymerase II (RNAPII) general transcription factor TFIIB from Pneumocystis carinii using the phylogenetically related biological model Schizosaccharomyces pombe. The results of this work show that Pneumocystis carinii TFIIB is able to replace the essential function of S. pombe TFIIB both in in vivo and in vitro assays. The S. pombe strain harboring the P carinii TFIIB grew slower than the parental wild-type S. pombe strain in complete media and in minimal media. The S. pombe cells carrying out the P. carinii TFIIB are larger than the wild-type cells, indicating that the TFIIB gene replacement confers a phenotype, most likely due to defects in transcription. P. carinii TFIIB forms very weak complexes with S. pombe TATA-binding protein on a TATA box promoter but it is able to form stable complexes in vitro when S. pombe TFIIF/RNAPII are added. P. carinii TFIIB can also replace the transcriptional function of S. pombe TFIIB in an in vitro assay. The transcription start sites (TSS) of the endogenous adh gene do not change when P. carinii TFIIB replaces S. pombe TFIIB, and neither does the TSS of the nmt1 gene, although this last gene is poorly transcribed in vivo in the presence of P. carinii TFIIB. Since transcription by RNA polymerase II in Pneumocystis is poorly understood, the results described in this study are promising and indicate that TFIIB from P. carinii can replace the transcriptional functions of S. pombe TFIIB, although the cells expressing the P. carini TFIIB show an altered phenotype. However, performing studies using a heterologous approach, like this one, could be relevant to understanding the basic molecular processes of Pneumocystis such as transcription and replication.
Collapse
Affiliation(s)
- Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Correspondence: (D.A.R.); (E.M.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (A.S.)
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (A.S.)
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (A.S.)
- Correspondence: (D.A.R.); (E.M.)
| |
Collapse
|
4
|
Schmid-Siegert E, Richard S, Luraschi A, Mühlethaler K, Pagni M, Hauser PM. Expression Pattern of the Pneumocystis jirovecii Major Surface Glycoprotein Superfamily in Patients with Pneumonia. J Infect Dis 2021; 223:310-318. [PMID: 32561915 DOI: 10.1093/infdis/jiaa342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The human pathogen Pneumocystis jirovecii harbors 6 families of major surface glycoproteins (MSGs) encoded by a single gene superfamily. MSGs are presumably responsible for antigenic variation and adhesion to host cells. The genomic organization suggests that a single member of family I is expressed at a given time per cell, whereas members of the other families are simultaneously expressed. METHODS We analyzed RNA sequences expressed in several clinical samples, using specific weighted profiles for sorting of reads and calling of single-nucleotide variants to estimate the diversity of the expressed genes. RESULTS A number of different isoforms of at least 4 MSG families were expressed simultaneously, including isoforms of family I, for which confirmation was obtained in the wet laboratory. CONCLUSION These observations suggest that every single P. jirovecii population is made of individual cells with distinct surface properties. Our results enhance our understanding of the unique antigenic variation system and cell surface structure of P. jirovecii.
Collapse
Affiliation(s)
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Luraschi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Is the unique camouflage strategy of Pneumocystis associated with its particular niche within host lungs? PLoS Pathog 2019; 15:e1007480. [PMID: 30677096 PMCID: PMC6345417 DOI: 10.1371/journal.ppat.1007480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
6
|
Delaye L, Ruiz-Ruiz S, Calderon E, Tarazona S, Conesa A, Moya A. Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis. Genome Biol Evol 2018; 10:1596-1606. [PMID: 29893833 PMCID: PMC6012782 DOI: 10.1093/gbe/evy116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent with their function as antigens, most sites under diversifying selection in Msg code for residues with large relative surface accessibility areas. We also found evidence of positive selection in part of the cell machinery used to export Msg to the cell surface. Specifically, we found that genes participating in glycosylphosphatidylinositol (GPI) biosynthesis show an increased rate of nonsynonymous substitutions (dN) versus synonymous substitutions (dS). GPI is a molecule synthesized in the endoplasmic reticulum that is used to anchor proteins to membranes. We interpret the aforementioned findings as evidence of selective pressure exerted by the host immune system on Pneumocystis species, shaping the evolution of Msg and several proteins involved in GPI biosynthesis. We suggest that genome evolution in Pneumocystis is well described by the Red-Queen hypothesis whereby genes relevant for biotic interactions show accelerated rates of evolution.
Collapse
Affiliation(s)
- Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Guanajuato, México
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain
| | - Enrique Calderon
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla.,Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sonia Tarazona
- Centro de Investigacion Principe Felipe, València, Spain.,Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Spain
| | - Ana Conesa
- Centro de Investigacion Principe Felipe, València, Spain.,Microbiology and Cell Science, University of Florida
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Institute for Integrative Systems Biology, Universitat de València, Spain
| |
Collapse
|
7
|
Abstract
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different.IMPORTANCEPneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens.
Collapse
|