1
|
Bertagna MA, Bright LJ, Ye F, Jiang YY, Sarkar D, Pradhan A, Kumar S, Gao S, Turkewitz AP, Tsypin LMZ. Inferring gene-pathway associations from consolidated transcriptome datasets: an interactive gene network explorer for Tetrahymena thermophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.627356. [PMID: 39713406 PMCID: PMC11661410 DOI: 10.1101/2024.12.12.627356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Although an established model organism, Tetrahymena thermophila remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the Tetrahymena Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.
Collapse
Affiliation(s)
- Michael A. Bertagna
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Lydia J. Bright
- Department of Biology, State University of New York at New Paltz, New Paltz, NY, USA
| | - Fei Ye
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Debolina Sarkar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune, 411007 Maharashtra State, India
| | - Ajay Pradhan
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune, 411007 Maharashtra State, India
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune, 411007 Maharashtra State, India
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Lev M. Z. Tsypin
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
2
|
Woodcock MR, Powers K, Snead K, Pellettieri J. Flatworm Transcriptomes Reveal Widespread Parasitism by Histophagous Ciliates. Genome Biol Evol 2024; 16:evae007. [PMID: 38242711 PMCID: PMC10837001 DOI: 10.1093/gbe/evae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A co-phylogenetic reconstruction provides strong evidence for the coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
3
|
Woodcock MR, Powers K, Snead K, Pellettieri J. FLATWORM TRANSCRIPTOMES REVEAL WIDESPREAD PARASITISM BY HISTOPHAGOUS CILIATES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558123. [PMID: 37745455 PMCID: PMC10516030 DOI: 10.1101/2023.09.17.558123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These 'histophages' feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A cophylogenetic reconstruction provides strong evidence for coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M. Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
4
|
Kuppannan A, Jiang YY, Maier W, Liu C, Lang CF, Cheng CY, Field MC, Zhao M, Zoltner M, Turkewitz AP. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila. PLoS Genet 2022; 18:e1010194. [PMID: 35587496 PMCID: PMC9159632 DOI: 10.1371/journal.pgen.1010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila.
Collapse
Affiliation(s)
- Aarthi Kuppannan
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Yu-Yang Jiang
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Wolfgang Maier
- Bio3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Chang Liu
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Charles F. Lang
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Chao-Yin Cheng
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Minglei Zhao
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Martin Zoltner
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec, Czech Republic
| | - Aaron P. Turkewitz
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United State of America
| |
Collapse
|
5
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
6
|
Grl1 Protein is a Candidate K Antigen in Tetrahymena thermophila. Protist 2018; 169:321-332. [PMID: 29803115 DOI: 10.1016/j.protis.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 01/18/2023]
Abstract
In Tetrahymena, K antigens associate only with mature basal bodies and are expected to play important roles in the morphogenesis and function of the membrane skeleton around basal bodies, but these proteins have not been identified and their functions are unknown. Commercially available anti-human Rho GDP-dissociation inhibitor α (RhoGDIα) antibody (sc-33201) was accidentally found to show very similar immunofluorescence staining patterns to those of anti-K antigen antibodies, such as 424A8 and 10D12 mouse monoclonal antibodies, in Tetrahymena. A 40kDa protein recognized by this antibody was partially purified and identified as granule lattice protein 1 (Grl1p) by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry. In immunoblotting experiments this antibody was suggested to recognize endogenous Grl1p. The three-dimensional structure of proGrl1p protein predicted by I-TASSER was similar to a spectrin family protein. Grl1 may be a K antigen and a spectrin-like protein in Tetrahymena.
Collapse
|
7
|
Kaur H, Sparvoli D, Osakada H, Iwamoto M, Haraguchi T, Turkewitz AP. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 2017; 28:1551-1564. [PMID: 28381425 PMCID: PMC5449153 DOI: 10.1091/mbc.e17-01-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Lysosome-related organelles (LROs) are secretory organelles formed by convergence between secretory and endosomal trafficking pathways. In Tetrahymena, secretory vesicles that resemble dense core granules are a new class of LROs whose synthesis depends on a conserved syntaxin required for heterotypic fusion and AP-3 for maturation. The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Guerrier S, Plattner H, Richardson E, Dacks JB, Turkewitz AP. An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 2016; 18:18-28. [PMID: 27696651 DOI: 10.1111/tra.12450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
As most of eukaryotic diversity lies in single-celled protists, they represent unique opportunities to ask questions about the balance of conservation and innovation in cell biological features. Among free-living protists the ciliates offer ease of culturing, a rich array of experimental approaches, and versatile molecular tools, particularly in Tetrahymena thermophila and Paramecium tetraurelia. These attributes have been exploited by researchers to analyze a wealth of cellular structures in these large and complex cells. This mini-review focuses on 3 aspects of ciliate membrane dynamics, all linked with endolysosomal trafficking. First is nutrition based on phagocytosis and maturation of food vacuoles. Secondly, we discuss regulated exocytosis from vesicles that have features of both dense core secretory granules but also lysosome-related organelles. The third topic is the targeting, breakdown and resorption of parental nuclei in mating partners. For all 3 phenomena, it is clear that elements of the canonical membrane-trafficking system have been retained and in some cases repurposed. In addition, there is evidence that recently evolved, lineage-specific proteins provide determinants in these pathways.
Collapse
Affiliation(s)
| | - Helmut Plattner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila. G3-GENES GENOMES GENETICS 2016; 6:2505-16. [PMID: 27317773 PMCID: PMC4978903 DOI: 10.1534/g3.116.028878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation-a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation.
Collapse
|
10
|
Plattner H. Trichocysts-Paramecium'sProjectile-like Secretory Organelles. J Eukaryot Microbiol 2016; 64:106-133. [DOI: 10.1111/jeu.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Helmut Plattner
- Department of Biology; University of Konstanz; PO Box M625 78457 Konstanz Germany
| |
Collapse
|
11
|
Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p. EUKARYOTIC CELL 2015; 14:817-33. [PMID: 26092918 DOI: 10.1128/ec.00058-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/10/2015] [Indexed: 01/26/2023]
Abstract
In many organisms, sophisticated mechanisms facilitate release of peptides in response to extracellular stimuli. In the ciliate Tetrahymena thermophila, efficient peptide secretion depends on specialized vesicles called mucocysts that contain dense crystalline cores that expand rapidly during exocytosis. Core assembly depends of endoproteolytic cleavage of mucocyst proproteins by an aspartyl protease, cathepsin 3 (CTH3). Here, we show that a second enzyme identified by expression profiling, Cth4p, is also required for processing of proGrl proteins and for assembly of functional mucocysts. Cth4p is a cysteine cathepsin that localizes partially to endolysosomal structures and appears to act downstream of, and may be activated by, Cth3p. Disruption of CTH4 results in cells (Δcth4) that show aberrant trimming of Grl proproteins, as well as grossly aberrant mucocyst exocytosis. Surprisingly, Δcth4 cells succeed in assembling crystalline mucocyst cores. However, those cores do not undergo normal directional expansion during exocytosis, and they thus fail to efficiently extrude from the cells. We could phenocopy the Δcth4 defects by mutating conserved catalytic residues, indicating that the in vivo function of Cth4p is enzymatic. Our results indicate that as for canonical proteins packaged in animal secretory granules, the maturation of mucocyst proproteins involves sequential processing steps. The Δcth4 defects uncouple, in an unanticipated way, the assembly of mucocyst cores and their subsequent expansion and thereby reveal a previously unsuspected aspect of polypeptide secretion in ciliates.
Collapse
|
12
|
Kumar S, Briguglio JS, Turkewitz AP. An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila. Mol Biol Cell 2014; 25:2444-60. [PMID: 24943840 PMCID: PMC4142616 DOI: 10.1091/mbc.e14-03-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In animal cells, the assembly of dense cores in secretory granules is controlled by proteolytic processing of proproteins. The same phenomenon occurs in the ciliate Tetrahymena thermophila, but the proteases involved appear to be highly unrelated, suggesting that similar regulatory mechanisms have different molecular origins. In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolytic maturation of the entire set of mucocyst proproteins and dramatically reduced mucocyst accumulation. The activity of Cth3p was eliminated by mutation of two predicted active-site mutations, and overexpression of the wild-type gene, but not the catalytic-site mutant, partially rescued a Mendelian mutant defective in mucocyst proprotein processing. Our results provide the first direct evidence for the role of proprotein processing in this system. Of interest, both localization and the CTH3 disruption phenotype suggest that the enzyme provides non–mucocyst-related functions. Phylogenetic analysis of the T. thermophila cathepsins, combined with prior work on the role of sortilin receptors in mucocyst biogenesis, suggests that repurposing of lysosomal enzymes was an important step in the evolution of secretory granules in ciliates.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Joseph S Briguglio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
13
|
Briguglio JS, Turkewitz AP. Tetrahymena thermophila: a divergent perspective on membrane traffic. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:500-16. [PMID: 24634411 DOI: 10.1002/jez.b.22564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Tetrahymena thermophila, a member of the Ciliates, represents a class of organisms distantly related from commonly used model organisms in cell biology, and thus offers an opportunity to explore potentially novel mechanisms and their evolution. Ciliates, like all eukaryotes, possess a complex network of organelles that facilitate both macromolecular uptake and secretion. The underlying endocytic and exocytic pathways are key mediators of a cell's interaction with its environment, and may therefore show niche-specific adaptations. Our laboratory has taken a variety of approaches to identify key molecular determinants for membrane trafficking pathways in Tetrahymena. Studies of Rab GTPases, dynamins, and sortilin-family receptors substantiate the widespread conservation of some features but also uncover surprising roles for lineage-restricted innovation.
Collapse
Affiliation(s)
- Joseph S Briguglio
- The Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
14
|
Briguglio JS, Kumar S, Turkewitz AP. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. ACTA ACUST UNITED AC 2013; 203:537-50. [PMID: 24189272 PMCID: PMC3824020 DOI: 10.1083/jcb.201305086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The delivery of nonaggregated cargo proteins to Tetrahymena secretory granules requires receptors of the sortilin/VPS10 family, proteins classically associated with lysosome biogenesis. Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.
Collapse
Affiliation(s)
- Joseph S Briguglio
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | |
Collapse
|
15
|
Conservation and innovation in Tetrahymena membrane traffic: proteins, lipids, and compartments. Methods Cell Biol 2012; 109:141-75. [PMID: 22444145 DOI: 10.1016/b978-0-12-385967-9.00006-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past decade has seen a significant expansion in our understanding of membrane traffic in Tetrahymena thermophila, facilitated by the development of new experimental tools and by the availability of the macronuclear genome sequence. Here we review studies on multiple pathways of uptake and secretion, as well as work on metabolism of membrane lipids. We discuss evidence for conservation versus innovation in the mechanisms used in ciliates compared with those in other eukaryotic lineages, and raise the possibility that existing gene expression databases can be exploited to analyze specific pathways of membrane traffic in these cells.
Collapse
|
16
|
Abstract
The growth, survival, and life cycle progression of the freshwater ciliated protozoan Tetrahymena thermophila are responsive to protein signals thought to be released by constitutive secretion. In addition to providing insights about ciliate communication, studies of constitutive secretion are of interest for evaluating the utility of T. thermophila as a platform for the expression of secreted protein therapeutics. For these reasons, we undertook an unbiased investigation of T. thermophila secreted proteins using wild-type and secretion mutant strains. Extensive tandem mass spectrometry analyses of secretome samples were performed. We identified a total of 207 secretome proteins, most of which were not detected in a set of abundant whole-cell protein identifications. Numerous proteases and other hydrolases were secreted from cells grown in rich medium but not cells transferred to a nutrient starvation condition. On the other hand, we detected the starvation-enhanced secretion of a small number of cytosolic proteins, suggestive of an exosome-like pathway in T. thermophila. Subsets of proteins from the T. thermophila regulated secretion pathway were detected with differential representation across strains and culture conditions. Finally, many secretome proteins had a predicted N-terminal signal sequence but no other annotated characteristic or functional classification. Our work provides the first comprehensive analysis of secreted proteins in T. thermophila and establishes the groundwork for future studies of constitutive protein secretion biology and biotechnology in ciliates.
Collapse
|
17
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|