1
|
The Conjusome-A Transient Organelle Linking Genome Rearrangements in the Parental and Developing Macronuclei. Microorganisms 2023; 11:microorganisms11020418. [PMID: 36838383 PMCID: PMC9962563 DOI: 10.3390/microorganisms11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The conjusome plays an important role in the conjugation events that occur in Tetrahymena thermophila. The conjusome appears in the anterior of conjugant pairs during the early stages of new macronuclei (anlagen) development. It lacks a membrane, and is composed of a network of fibrous, electron dense material, containing background cytoplasm and ribosomes. Several proteins localize to this organelle, including Pdd1p, a chromodomain protein that participates in the formation of chromatin-containing structures in developing macronuclear anlagen, and is associated with the elimination of specific germ-line sequences from developing macronuclei. Conjugants lacking the PDD1 allele in the parental macronucleus do not show Pdd1p antibody staining in conjusomes. Investigations were performed using mutant cell lines, uniparental cytogamy and drug treatment, and show that the conjusome appears to be dependent on parental macronuclei condensation, and is a transitory organelle that traffics nuclear determinants from the parental macronucleus to the developing anlagen. These data, taken together with Pdd1p knockout experiments, suggest the conjusome is involved in the epigenetic phenomena that occur during conjugation and sexual reorganization. This is likely a conserved organelle. Conjusome-like structures were also observed in another Ciliate, Stylonichia. In general, conjusomes have features that resemble germ line P-granules.
Collapse
|
2
|
Allen SE, Nowacki M. Roles of Noncoding RNAs in Ciliate Genome Architecture. J Mol Biol 2020; 432:4186-4198. [PMID: 31926952 PMCID: PMC7374600 DOI: 10.1016/j.jmb.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Ciliates are an interesting model system for investigating diverse functions of noncoding RNAs, especially in genome defence pathways. During sexual development, the ciliate somatic genome undergoes massive rearrangement and reduction through removal of transposable elements and other repetitive DNA. This is guided by a multitude of noncoding RNAs of different sizes and functions, the extent of which is only recently becoming clear. The genome rearrangement pathways evolved as a defence against parasitic DNA, but interestingly also use the transposable elements and transposases to execute their own removal. Thus, ciliates are also a good model for the coevolution of host and transposable element, and the mutual dependence between the two. In this review, we summarise the genome rearrangement pathways in three diverse species of ciliate, with focus on recent discoveries and the roles of noncoding RNAs. Ciliate genomes undergo massive rearrangement and reduction during development. Transposon elimination is guided by small RNAs and carried out by transposases. New pathways for noncoding RNA production have recently been discovered in ciliates. Diverse ciliate species have different mechanisms for RNA-guided genome remodeling.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Switzerland
| | | |
Collapse
|
3
|
Jaspan VN, Taye ME, Carle CM, Chung JJ, Chalker DL. Boundaries of eliminated heterochromatin of Tetrahymena are positioned by the DNA-binding protein Ltl1. Nucleic Acids Res 2019; 47:7348-7362. [PMID: 31194876 PMCID: PMC6698652 DOI: 10.1093/nar/gkz504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
During differentiation of the Tetrahymena thermophila somatic nucleus, its germline-derived DNA undergoes extensive reorganization including the removal of ∼50 Mb from thousands of loci called internal eliminated sequences (IESs). IES-associated chromatin is methylated on lysines 9 and 27 of histone H3, marking newly formed heterochromatin for elimination. To ensure that this reorganized genome maintains essential coding and regulatory sequences, the boundaries of IESs must be accurately defined. In this study, we show that the developmentally expressed protein encoded by Lia3-Like 1 (LTL1) (Ttherm_00499370) is necessary to direct the excision boundaries of particular IESs. In ΔLTL1 cells, boundaries of eliminated loci are aberrant and heterogeneous. The IESs regulated by Ltl1 are distinct from those regulated by the guanine-quadruplex binding Lia3 protein. Ltl1 has a general affinity for double stranded DNA (Kd ∼ 350 nM) and binds specifically to a 50 bp A+T rich sequence flanking each side of the D IES (Kd ∼ 43 nM). Together these data reveal that Ltl1 and Lia3 control different subsets of IESs and that their mechanisms for flanking sequence recognition are distinct.
Collapse
Affiliation(s)
- Vita N Jaspan
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marta E Taye
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine M Carle
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joyce J Chung
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Douglas L Chalker
- Biology Department, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Tsypin LM, Turkewitz AP. The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database. SOFTWAREX 2017; 6:165-171. [PMID: 29104906 PMCID: PMC5663188 DOI: 10.1016/j.softx.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.
Collapse
|
5
|
McDaniel SL, Zweifel E, Harris PKW, Yao MC, Cole ES, Chalker DL. DRH1, a p68-related RNA helicase gene, is required for chromosome breakage in Tetrahymena. Biol Open 2016; 5:1790-1798. [PMID: 27793833 PMCID: PMC5200911 DOI: 10.1242/bio.021576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing and translation. The genome of the ciliate Tetrahymena thermophile encodes two p68-like helicases, Drh1p and Lia2p. We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised from loci dispersed throughout the genome. Strains with DRH1 deleted from the germline nuclei, which do not express the protein during post-zygotic development, fail to fragment the developing macronuclear chromosomes. IES excision still occurs in the absence of DRH1 zygotic expression; thus, Drh1p is the first protein found to be specifically required for chromosome breakage but not DNA elimination. Summary: The p68-related Drh1protein is essential for both growth and development of the ciliate Tetrahymena thermophila. It localizes to meiotic nuclei and is required for chromosome breakage of developing somatic chromosomes.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Erica Zweifel
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Peter K W Harris
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Eric S Cole
- Biology Department, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Douglas L Chalker
- Department of Biology, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
6
|
Kataoka K, Mochizuki K. Heterochromatin aggregation during DNA elimination in Tetrahymena is facilitated by a prion-like protein. J Cell Sci 2016; 130:480-489. [PMID: 27909245 DOI: 10.1242/jcs.195503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Regulated aggregations of prion and prion-like proteins play physiological roles in various biological processes. However, their structural roles in the nucleus are poorly understood. Here, we show that the prion-like protein Jub6p is involved in the regulation of chromatin structure in the ciliated protozoan Tetrahymena thermophila Jub6p forms sodium dodecyl sulfate (SDS)-resistant aggregates when it is ectopically expressed in vegetative cells and binds to RNA in vitro Jub6p is a heterochromatin component and is important for the formation of heterochromatin bodies during the process of programmed DNA elimination. We suggest that RNA-protein aggregates formed by Jub6p are an essential architectural component for the assembly of heterochromatin bodies.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria .,Institute of Human Genetics (IGH), CNRS UPR1142, 141 rue de la Cardonille, Montpellier Cedex 5 34396, France
| |
Collapse
|
7
|
Carle CM, Zaher HS, Chalker DL. A Parallel G Quadruplex-Binding Protein Regulates the Boundaries of DNA Elimination Events of Tetrahymena thermophila. PLoS Genet 2016; 12:e1005842. [PMID: 26950070 PMCID: PMC4780704 DOI: 10.1371/journal.pgen.1005842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Guanine (G)-rich DNA readily forms four-stranded quadruplexes in vitro, but evidence for their participation in genome regulation is limited. We have identified a quadruplex-binding protein, Lia3, that controls the boundaries of germline-limited, internal eliminated sequences (IESs) of Tetrahymena thermophila. Differentiation of this ciliate's somatic genome requires excision of thousands of IESs, targeted for removal by small-RNA-directed heterochromatin formation. In cells lacking LIA3 (ΔLIA3), the excision of IESs bounded by specific G-rich polypurine tracts was impaired and imprecise, whereas the removal of IESs without such controlling sequences was unaffected. We found that oligonucleotides containing these polypurine tracts formed parallel G-quadruplex structures that are specifically bound by Lia3. The discovery that Lia3 binds G-quadruplex DNA and controls the accuracy of DNA elimination at loci with specific G-tracts uncovers an unrecognized potential of quadruplex structures to regulate chromosome organization.
Collapse
Affiliation(s)
- Christine M. Carle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Abstract
Ciliates are champions in programmed genome rearrangements. They carry out extensive restructuring during differentiation to drastically alter the complexity, relative copy number, and arrangement of sequences in the somatic genome. This chapter focuses on the model ciliate Tetrahymena, perhaps the simplest and best-understood ciliate studied. It summarizes past studies on various genome rearrangement processes and describes in detail the remarkable progress made in the past decade on the understanding of DNA deletion and other processes. The process occurs at thousands of specific sites to remove defined DNA segments that comprise roughly one-third of the genome including all transposons. Interestingly, this DNA rearranging process is a special form of RNA interference. It involves the production of double-stranded RNA and small RNA that guides the formation of heterochromatin. A domesticated piggyBac transposase is believed to cut off the marked chromatin, and the retained sequences are joined together through nonhomologous end-joining processes. Many of the proteins and DNA players involved have been analyzed and are described. This link provides possible explanations for the evolution, mechanism, and functional roles of the process. The article also discusses the interactions between parental and progeny somatic nuclei that affect the selection of sequences for deletion, and how the specific deletion boundaries are determined after heterochromatin marking.
Collapse
|
9
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
10
|
Tetrahymena Pot2 is a developmentally regulated paralog of Pot1 that localizes to chromosome breakage sites but not to telomeres. EUKARYOTIC CELL 2014; 13:1519-29. [PMID: 25303953 DOI: 10.1128/ec.00204-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetrahymena telomeres are protected by a protein complex composed of Pot1, Tpt1, Pat1, and Pat2. Pot1 binds the 3' overhang and serves multiple roles in telomere maintenance. Here we describe Pot2, a paralog of Pot1 which has evolved a novel function during Tetrahymena sexual reproduction. Pot2 is unnecessary for telomere maintenance during vegetative growth, as the telomere structure is unaffected by POT2 macronuclear gene disruption. Pot2 is expressed only in mated cells, where it accumulates in developing macronuclei around the time of two chromosome processing events: internal eliminated sequence (IES) excision and chromosome breakage. Chromatin immunoprecipitation (ChIP) demonstrated Pot2 localization to regions of chromosome breakage but not to telomeres or IESs. Pot2 association with chromosome breakage sites (CBSs) occurs slightly before chromosome breakage. Pot2 did not bind CBSs or telomeric DNA in vitro, suggesting that it is recruited to CBSs by another factor. The telomere proteins Pot1, Pat1, and Tpt1 and the IES binding factor Pdd1 fail to colocalize with Pot2. Thus, Pot2 is the first protein found to associate specifically with CBSs. The selective association of Pot2 versus Pdd1 with CBSs or IESs indicates a mechanistic difference between the chromosome processing events at these two sites. Moreover, ChIP revealed that histone marks characteristic of IES processing, H3K9me3 and H3K27me3, are absent from CBSs. Thus, the mechanisms of chromosome breakage and IES excision must be fundamentally different. Our results lead to a model where Pot2 directs chromosome breakage by recruiting telomerase and/or the endonuclease responsible for DNA cleavage to CBSs.
Collapse
|
11
|
LIA4 encodes a chromoshadow domain protein required for genomewide DNA rearrangements in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 13:1300-11. [PMID: 25084866 DOI: 10.1128/ec.00125-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive DNA elimination occurs as part of macronuclear differentiation during Tetrahymena sexual reproduction. The identification of sequences to excise is guided by a specialized RNA interference (RNAi) machinery that targets the methylation of histone H3 lysine 9 (K9) and K27 on chromatin associated with these internal eliminated sequences (IESs). This modified chromatin is reorganized into heterochromatic subnuclear foci, which is a hallmark of their subsequent elimination. Here, we demonstrate that Lia4, a chromoshadow domain-containing protein, is an essential component in this DNA elimination pathway. LIA4 knockout (ΔLIA4) lines fail to excise IESs from their developing somatic genome and arrest at a late stage of conjugation. Lia4 acts after RNAi-guided heterochromatin formation, as both H3K9 and H3K27 methylation are established. Nevertheless, without LIA4, these cells fail to form the heterochromatic foci associated with DNA rearrangement, and Lia4 accumulates in the foci, indicating that Lia4 plays a key role in their structure. These data indicate a critical role for Lia4 in organizing the nucleus during Tetrahymena macronuclear differentiation.
Collapse
|
12
|
Mutations in Pdd1 reveal distinct requirements for its chromodomain and chromoshadow domain in directing histone methylation and heterochromatin elimination. EUKARYOTIC CELL 2013; 13:190-201. [PMID: 24297443 DOI: 10.1128/ec.00219-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pdd1, a specialized HP1-like protein, is required for genome-wide DNA rearrangements that restructure a previously silent germ line genome into an active somatic genome during macronuclear differentiation of Tetrahymena thermophila. We deleted or otherwise mutated conserved regions of the protein to investigate how its different domains promote the excision of thousands of internal eliminated sequences (IESs). Previous studies revealed that Pdd1 contributes to recognition of IES loci after they are targeted by small-RNA-guided methylation of histone H3 on lysine 27 (H3K27), subsequently aids the establishment of H3K9 methylation, and recruits proteins that lead to excision. The phenotypes we observed for different Pdd1 alleles showed that each of the two chromodomains and the chromoshadow domain (CSD) have distinct contributions during somatic genome differentiation. Chromodomain 1 (CD1) is essential for conjugation as either its deletion or the substitution of two key aromatic amino acid residues (the W97A W100A mutant) is lethal. These mutations caused mislocalization of a cyan fluorescent protein (CFP)-tagged protein, prevented the establishment of histone H3 dimethylated on K9 (H3K9me2), and abolished IES excision. Nevertheless, the requirement for CD1 could be bypassed by recruiting Pdd1 directly to an IES by addition of a specific DNA binding domain. Chromodomain 2 (CD2) was necessary for producing viable progeny, but low levels of H3K9me2 and IES excision still occurred. A mutation in the chromoshadow domain (CSD) prevented Pdd1 focus formation but still permitted ∼17% of conjugants to produce viable progeny. However, this mutant was unable to stimulate excision when recruited to an ectopic IES, indicating that this domain is important for recruitment of excision factors.
Collapse
|
13
|
Shieh AWY, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One 2013; 8:e75337. [PMID: 24069402 PMCID: PMC3775806 DOI: 10.1371/journal.pone.0075337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
During macronuclear differentiation of the ciliate Tetrahymena thermophila, genome-wide DNA rearrangements eliminate nearly 50 Mbp of germline derived DNA, creating a streamlined somatic genome. The transposon-like and other repetitive sequences to be eliminated are identified using a piRNA pathway and packaged as heterochromatin prior to their removal. In this study, we show that LIA5, which encodes a zinc-finger protein likely of transposon origin, is required for both chromosome fragmentation and DNA elimination events. Lia5p acts after the establishment of RNAi-directed heterochromatin modifications, but prior to the excision of the modified sequences. In ∆LIA5 cells, DNA elimination foci, large nuclear sub-structures containing the sequences to be eliminated and the essential chromodomain protein Pdd1p, do not form. Lia5p, unlike Pdd1p, is not stably associated with these structures, but is required for their formation. In the absence of Lia5p, we could recover foci formation by ectopically inducing DNA damage by UV treatment. Foci in both wild-type or UV-treated ∆LIA5 cells contain dephosphorylated Pdd1p. These studies of LIA5 reveal that DNA elimination foci form after the excision of germ-line limited sequences occurs and indicate that Pdd1p reorganization is likely mediated through a DNA damage response.
Collapse
Affiliation(s)
- Annie Wan Yi Shieh
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Collapse
|
15
|
Lin IT, Chao JL, Yao MC. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol Biol Cell 2012; 23:2213-25. [PMID: 22513090 PMCID: PMC3364183 DOI: 10.1091/mbc.e11-11-0952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 112, Taiwan, Republic of China
| | | | | |
Collapse
|
16
|
Tetrahymena thermophila JMJD3 homolog regulates H3K27 methylation and nuclear differentiation. EUKARYOTIC CELL 2012; 11:601-14. [PMID: 22427430 DOI: 10.1128/ec.05290-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone H3K27me3 modification is an important regulator for development and gene expression. In Tetrahymena thermophila, the complex chromatin dynamics of H3K27me3 marks during nuclear development suggested that an H3K27me3 demethylase might exist. Here, we report an H3K27me3 demethylase homolog, JMJ1, in Tetrahymena. During conjugation, JMJ1 expression is upregulated and the protein is localized first in the parental macronucleus and then in the new macronucleus. In conjugating cells, knockdown of JMJ1 expression resulted in a severe reduction in the production of progeny, suggesting that JMJ1 is essential for Tetrahymena conjugation. Furthermore, knockdown of JMJ1 resulted in increased H3K27 trimethylation in the new macronucleus and reduced transcription of genes related to DNA elimination, while the DNA elimination process was also partially blocked. Knockdown of the H3K27 methyltransferase EZL2 but not that of EZL1 partially restored progeny production in JMJ1-knockdown cells and reduced abnormal H3K27me3 accumulation in the new macronucleus. Taken together, these results demonstrate a critical role for JMJ1 in regulating H3K27me3 during conjugation and the importance of JMJ1 in regulating gene expression in the new macronucleus but not in regulating the formation of heterochromatin associated with programmed DNA deletion.
Collapse
|
17
|
Abstract
Nuclear dualism is a characteristic feature of the ciliated protozoa. Tetrahymena have two different nuclei in each cell. The larger, polyploid, somatic macronucleus (MAC) is the site of transcriptional activity in the vegetatively growing cell. The smaller, diploid micronucleus (MIC) is transcriptionally inactive in vegetative cells, but is transcriptionally active in mating cells and responsible for the genetic continuity during sexual reproduction. Although the MICs and MACs develop from mitotic products of a common progenitor and reside in a common cytoplasm, they are different from one another in almost every respect.
Collapse
Affiliation(s)
- Kathleen M Karrer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila. G3-GENES GENOMES GENETICS 2011; 1:515-22. [PMID: 22384362 PMCID: PMC3276166 DOI: 10.1534/g3.111.000927] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 09/30/2011] [Indexed: 01/31/2023]
Abstract
Genetically programmed DNA rearrangements can regulate mRNA expression at an individual locus or, for some organisms, on a genome-wide scale. Ciliates rely on a remarkable process of whole-genome remodeling by DNA elimination to differentiate an expressed macronucleus (MAC) from a copy of the germline micronucleus (MIC) in each cycle of sexual reproduction. Here we describe results from the first high-throughput sequencing effort to investigate ciliate genome restructuring, comparing Sanger long-read sequences from a Tetrahymena thermophila MIC genome library to the MAC genome assembly. With almost 25% coverage of the unique-sequence MAC genome by MIC genome sequence reads, we created a resource for positional analysis of MIC-specific DNA removal that pinpoints MAC genome sites of DNA elimination at nucleotide resolution. The widespread distribution of internal eliminated sequences (IES) in promoter regions and introns suggests that MAC genome restructuring is essential not only for what it removes (for example, active transposons) but also for what it creates (for example, splicing-competent introns). Consistent with the heterogeneous boundaries and epigenetically modulated efficiency of individual IES deletions studied to date, we find that IES sites are dramatically under-represented in the ∼25% of the MAC genome encoding exons. As an exception to this general rule, we discovered a previously unknown class of small (<500 bp) IES with precise elimination boundaries that can contribute the 3′ exon of an mRNA expressed during genome restructuring, providing a new mechanism for expanding mRNA complexity in a developmentally regulated manner.
Collapse
|
19
|
Schoeberl UE, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates. J Biol Chem 2011; 286:37045-52. [PMID: 21914793 DOI: 10.1074/jbc.r111.276964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many transposon-related sequences are removed from the somatic macronucleus of ciliates during sexual reproduction. In the ciliate Tetrahymena, an RNAi-related mechanism produces small noncoding RNAs that induce heterochromatin formation, which is followed by DNA elimination. Because RNAi-related mechanisms repress transposon activities in a variety of eukaryotes, the DNA elimination mechanism of ciliates might have evolved from these types of transposon-silencing mechanisms. Nuclear dimorphism allows ciliates to identify any DNA that has invaded the germ-line micronucleus using small RNAs and a whole genome comparison of the micronucleus and the somatic macronucleus.
Collapse
Affiliation(s)
- Ursula E Schoeberl
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | |
Collapse
|
20
|
Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 2011; 45:227-46. [PMID: 21910632 DOI: 10.1146/annurev-genet-110410-132432] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoa extensively remodel their somatic genomes during nuclear development, fragmenting their chromosomes and removing large numbers of internal eliminated sequences (IESs). The sequences eliminated are unique and repetitive DNAs, including transposons. Recent studies have identified transposase proteins that appear to have been domesticated and are used by these cells to eliminate DNA not wanted in the somatic macronucleus. This DNA elimination process is guided by meiotically produced small RNAs, generated in the germline nucleus, that recognize homologous sequences leading to their removal. These scan RNAs are found in complexes with PIWI proteins. Before they search the developing genome for IESs to eliminate, they scan the parental somatic nucleus and are removed from the pool if they match homologous sequences in that previously reorganized genome. In Tetrahymena, the scan RNAs target heterochromatin modifications to mark IESs for elimination. This DNA elimination pathway in ciliates shares extensive similarity with piRNA-mediated silencing of metazoans and highlights the remarkable ability of homologous RNAs to shape developing genomes.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
21
|
Kataoka K, Mochizuki K. Programmed DNA elimination in Tetrahymena: a small RNA-mediated genome surveillance mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:156-73. [PMID: 21915788 DOI: 10.1007/978-1-4614-0332-6_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was initially discovered as a post-transcriptional gene silencing mechanism in which short RNAs are used to target complementary RNAs for degradation. During the past several years, it has been demonstrated that RNAi-related processes are also involved in transcriptional gene silencing by directing formation of heterochromatin. The dynamic DNA rearrangement during sexual reproduction of the ciliated protozoan Tetrahymena provides an extreme example of RNAi-directed heterochromatin formation. In this process, small RNAs of ∼28-29 nt, which are processed by the Dicer-like protein Dcl1p and are associated with the Argonaute family protein Twi1p, induce heterochromatin formation at complementary genomic sequences by recruiting the histone H3 lysine 9/27 methyltransferase Ezl1p and chromodomain proteins. Eventually these heterochromatinized regions are targeted for DNA elimination. In many eukaryotes, one of the major roles for RNAi-related mechanisms is silencing transposons, and DNA elimination in Tetrahymena is also believed to have evolved as a transposon defense by removing transposon-related sequences from the somatic genome. Because DNA elimination is achieved by the coordinated actions of noncoding RNA transcription, RNA processing, RNA transport, RNA-RNA and RNA-protein interactions, RNA degradation and RNA-directed chromatin modifications, DNA elimination in Tetrahymena is a useful model to study 'RNA infrastructure'.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
22
|
Matsuda A, Shieh AWY, Chalker DL, Forney JD. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena. EUKARYOTIC CELL 2010; 9:1087-99. [PMID: 20495055 PMCID: PMC2901671 DOI: 10.1128/ec.00379-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/14/2010] [Indexed: 02/02/2023]
Abstract
Development in ciliated protozoa involves extensive genome reorganization within differentiating macronuclei, which shapes the somatic genome of the next vegetative generation. Major events of macronuclear differentiation include excision of internal eliminated sequences (IESs), chromosome fragmentation, and genome amplification. Proteins required for these events include those with homology throughout eukaryotes as well as proteins apparently unique to ciliates. In this study, we identified the ciliate-specific Defective in IES Excision 5 (DIE5) genes of Paramecium tetraurelia (PtDIE5) and Tetrahymena thermophila (TtDIE5) as orthologs that encode nuclear proteins expressed exclusively during development. Abrogation of PtDie5 protein (PtDie5p) function by RNA interference (RNAi)-mediated silencing or TtDie5p by gene disruption resulted in the failure of developing macronuclei to differentiate into new somatic nuclei. Tetrahymena DeltaDIE5 cells arrested late in development and failed to complete genome amplification, whereas RNAi-treated Paramecium cells highly amplified new macronuclear DNA before the failure in differentiation, findings that highlight clear differences in the biology of these distantly related species. Nevertheless, IES excision and chromosome fragmentation failed to occur in either ciliate, which strongly supports that Die5p is a critical player in these processes. In Tetrahymena, loss of zygotic expression during development was sufficient to block nuclear differentiation. This observation, together with the finding that knockdown of Die5p in Paramecium still allows genome amplification, indicates that this protein acts late in macronuclear development. Even though DNA rearrangements in these two ciliates look to be quite distinct, analysis of DIE5 establishes the action of a conserved mechanism within the genome reorganization pathway.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
| | - Annie Wan-Yi Shieh
- Biology Department, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, Missouri 63130
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, Missouri 63130
| | - James D. Forney
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
| |
Collapse
|
23
|
Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 2010; 21:1753-62. [PMID: 20357003 PMCID: PMC2869380 DOI: 10.1091/mbc.e09-12-1079] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study suggests that a TPB2 piggyBac transposase has evolved to facilitate heterochromatin assembly and carry out the final DNA excision step of programmed DNA deletion in Tetrahymena thermophila. TPB2 appears to have gone through a domestication process to become a host gene and be maintained in the macronuclear genome. Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5′ protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
24
|
Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One 2009; 4:e4429. [PMID: 19204800 PMCID: PMC2636879 DOI: 10.1371/journal.pone.0004429] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. METHODOLOGY/PRINCIPAL FINDINGS A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. CONCLUSIONS/SIGNIFICANCE Of the approximately 27,000 predicted open reading frames, transcripts homologous to only approximately 5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.
Collapse
|
25
|
Chalker DL. Dynamic nuclear reorganization during genome remodeling of Tetrahymena. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2130-6. [PMID: 18706458 DOI: 10.1016/j.bbamcr.2008.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/06/2008] [Accepted: 07/14/2008] [Indexed: 01/01/2023]
Abstract
The single-celled ciliate Tetrahymena thermophila possesses two versions of its genome, one germline, one somatic, contained within functionally distinct nuclei (called the micronucleus and macronucleus, respectively). These two genomes differentiate from identical zygotic copies. The development of the somatic nucleus involves large-scale DNA rearrangements that eliminate 15 to 20 Mbp of their germline-derived DNA. The genomic regions excised are dispersed throughout the genome and are largely composed of repetitive sequences. These germline-limited sequences are targeted for removal from the genome by a RNA interference (RNAi)-related machinery that directs histone H3 lysine 9 and 27 methylation to their associated chromatin. The targeting small RNAs are generated in the micronucleus during meiosis and then compared against the parental macronucleus to further enrich for germline-limited sequences and ensure that only non-genic DNA segments are eliminated. Once the small RNAs direct these chromatin modifications, the DNA rearrangement machinery, including the chromodomain proteins Pdd1p and Pdd3p, assembles on these dispersed chromosomal sequences, which are then partitioned into nuclear foci where the excision events occur. This DNA rearrangement mechanism is Tetrahymena's equivalent to the silencing of repetitive sequences by the formation of heterochromatin. The dynamic nuclear reorganization that occurs offers an intriguing glimpse into mechanisms that shape nuclear architecture during eukaryotic development.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St Louis, Missouri 63130, USA.
| |
Collapse
|