1
|
Soong CL, Deguchi K, Takeuchi M, Kozono S, Horinouchi N, Si D, Hibi M, Shimizu S, Ogawa J. Gene identification and enzymatic characterization of the initial enzyme in pyrimidine oxidative metabolism, uracil-thymine dehydrogenase. J Biosci Bioeng 2024; 137:413-419. [PMID: 38485553 DOI: 10.1016/j.jbiosc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/20/2024]
Abstract
Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the enzyme purification. The purified enzyme was a heteromer consisting of three different subunits. The enzyme catalyzed oxidation of uracil to barbituric acid with artificial electron acceptors such as methylene blue, phenazine methosulfate, benzoquinone, and α-naphthoquinone; however, NAD+, NADP+, flavin adenine dinucleotide, and flavin mononucleotide did not serve as electron acceptors. The enzyme acted not only on uracil and thymine but also on 5-halogen-substituted uracil and hydroxypyrimidine (pyrimidone), while dihydropyrimidine, which is an intermediate in reductive pyrimidine metabolism, and purine did not serve as substrates. The activity of UTDH was enhanced by cerium ions, and this activation was observed with all combinations of substrates and electron acceptors.
Collapse
Affiliation(s)
- Chee-Leong Soong
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kengo Deguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Michiki Takeuchi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Syoko Kozono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuyuki Horinouchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Dayong Si
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Makoto Hibi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Ouyang Q, Pang Y, Yuan C, Tan H, Li X, Chen G. Theoretical investigation on the reaction mechanism of UTP cyclohydrolase. Phys Chem Chem Phys 2022; 24:17641-17653. [PMID: 35833743 DOI: 10.1039/d2cp01740g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleoside triphosphate cyclohydrolase (UrcA) is a critical enzyme of the uracil catabolism pathway that catalyses the two-step hydrolysis of uridine triphosphate (UTP). Although the recently resolved X-ray structure of UrcA in complex with substrate analogue dUTP provided insights into the structural characteristics of the enzyme, the detailed catalytic mechanism, including how the reaction intermediate accomplishes conformational conversion in the active centre, remains unclear. In this study, extensive DFT calculations and MD simulations were performed to investigate the catalytic reaction process of UrcA. This study shows that the first hydrolytic reactions in UrcA follow a three-step mechanism, while the second hydrolytic reaction follows a two-step mechanism. Glu392 plays a critical role in deprotonating the lytic water in both hydrolytic reactions. The rate-limiting step of the first hydrolytic reaction lies in the cleavage of the uracil ring, in which an extraneous water molecule bridges the proton transfer from C6-OH to N1 to enable the reaction to go through a six-membered transition state with relatively low steric tension. In the second hydrolytic reaction, Glu392 abstracts protons from the lytic water and directly transfers them to the nitrogen atom of the cleaved C4-N3 bond so that the hydrolytic reaction is no longer rate-limited by the C-N bond cleavage step. MD simulations show that the reaction intermediate experiences spontaneous conformation overturn in the active site of UrcA under the assistance of the hydrogen bond interaction from Tyr307 to place its C4-N3 bond alongside the Zn2+ centre of the enzyme to trigger the second hydrolytic reaction.
Collapse
Affiliation(s)
- Qingwen Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yunjie Pang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Zhang H, Wei Y, Lin L, Liu J, Chu R, Cao P, Ang EL, Zhao H, Yuchi Z, Zhang Y. Structural and Biochemical Investigation of UTP Cyclohydrolase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haibin Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ruoxing Chu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-01, Singapore 138669
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri. Sci Rep 2020; 10:16314. [PMID: 33004914 PMCID: PMC7530994 DOI: 10.1038/s41598-020-73253-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Lachancea kluyveri, a weak Crabtree positive yeast, has been extensively studied for its unique URC pyrimidine catabolism pathway. It produces more biomass than Saccharomyces cerevisiae due to the underlying weak Crabtree effect and resorts to fermentation only in oxygen limiting conditions that renders it as a suitable industrial host. The yeast also produces ethyl acetate as a major overflow metabolite in aerobic conditions. Here, we report the first genome-scale metabolic model, iPN730, of L. kluyveri comprising of 1235 reactions, 1179 metabolites, and 730 genes distributed in 8 compartments. The in silico viability in different media conditions and the growth characteristics in various carbon sources show good agreement with experimental data. Dynamic flux balance analysis describes the growth dynamics, substrate utilization and product formation kinetics in various oxygen-limited conditions. We have also demonstrated the effect of switching carbon sources on the production of ethyl acetate under varying oxygen uptake rates. A phenotypic phase plane analysis described the energetic cost penalty of ethyl acetate and ethanol production on the specific growth rate of L. kluyveri. We generated the context specific models of L. kluyveri growing on uracil or ammonium salts as the sole nitrogen source. Differential flux calculated using flux variability analysis helped us in highlighting pathways like purine, histidine, riboflavin and pyrimidine metabolism associated with uracil degradation. The genome-scale metabolic construction of L. kluyveri will provide a better understanding of metabolism behind ethyl acetate production as well as uracil catabolism (pyrimidine degradation) pathway. iPN730 is an addition to genome-scale metabolic models of non-conventional yeasts that will facilitate system-wide omics analysis to understand fungal metabolic diversity.
Collapse
|
5
|
Yin J, Wei Y, Liu D, Hu Y, Lu Q, Ang EL, Zhao H, Zhang Y. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine. J Biol Chem 2019; 294:15662-15671. [PMID: 31455636 DOI: 10.1074/jbc.ra119.010406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
The reductive pyrimidine catabolic pathway is the most widespread pathway for pyrimidine degradation in bacteria, enabling assimilation of nitrogen for growth. This pathway, which has been studied in several bacteria including Escherichia coli B, releases only one utilizable nitrogen atom from each molecule of uracil, whereas the other nitrogen atom remains trapped in the end product β-alanine. Here, we report the biochemical characterization of a β-alanine:2-oxoglutarate aminotransferase (PydD) and an NAD(P)H-dependent malonic semialdehyde reductase (PydE) from a pyrimidine degradation gene cluster in the bacterium Lysinibacillus massiliensis Together, these two enzymes converted β-alanine into 3-hydroxypropionate (3-HP) and generated glutamate, thereby making the second nitrogen from the pyrimidine ring available for assimilation. Using bioinformatics analyses, we found that PydDE homologs are associated with reductive pyrimidine pathway genes in many Gram-positive bacteria in the classes Bacilli and Clostridia. We demonstrate that Bacillus smithii grows in a defined medium with uracil or uridine as its sole nitrogen source and detected the accumulation of 3-HP as a waste product. Our findings extend the reductive pyrimidine catabolic pathway and expand the diversity of enzymes involved in bacterial pyrimidine degradation.
Collapse
Affiliation(s)
- Jinyu Yin
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Linder T. A genomic survey of nitrogen assimilation pathways in budding yeasts (sub-phylum Saccharomycotina). Yeast 2018; 36:259-273. [DOI: 10.1002/yea.3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tomas Linder
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| |
Collapse
|
7
|
Botou M, Lazou P, Papakostas K, Lambrinidis G, Evangelidis T, Mikros E, Frillingos S. Insight on specificity of uracil permeases of the NAT/NCS2 family from analysis of the transporter encoded in the pyrimidine utilization operon ofEscherichia coli. Mol Microbiol 2018; 108:204-219. [DOI: 10.1111/mmi.13931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Thomas Evangelidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| |
Collapse
|
8
|
Brion C, Pflieger D, Souali-Crespo S, Friedrich A, Schacherer J. Differences in environmental stress response among yeasts is consistent with species-specific lifestyles. Mol Biol Cell 2016; 27:1694-705. [PMID: 27009200 PMCID: PMC4865325 DOI: 10.1091/mbc.e15-12-0816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 12/19/2022] Open
Abstract
Defining how organisms respond to environmental change has always been an important step toward understanding their adaptive capacity and physiology. Variation in transcription during stress has been widely described in model species, especially in the yeast Saccharomyces cerevisiae, which helped to shape general rules regarding how cells cope with environmental constraints, as well as to decipher the functions of many genes. Comparison of the environmental stress response (ESR) across species is essential to obtaining better insight into the common and species-specific features of stress defense. In this context, we explored the transcriptional landscape of the yeast Lachancea kluyveri (formerly Saccharomyces kluyveri) in response to diverse stresses, using RNA sequencing. We investigated variation in gene expression and observed a link between genetic plasticity and environmental sensitivity. We identified the ESR genes in this species and compared them to those already found in S. cerevisiae We observed common features between the two species, as well as divergence in the regulatory networks involved. Of interest, some changes were related to differences in species lifestyle. Thus we were able to decipher how adaptation to stress has evolved among different yeast species. Finally, by analyzing patterns of coexpression, we were able to propose potential biological functions for 42% of genes and also annotate 301 genes for which no function could be assigned by homology. This large data set allowed for the characterization of the evolution of gene regulation and provides an efficient tool for assessing gene function.
Collapse
Affiliation(s)
- Christian Brion
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR7156, Strasbourg 67083, France
| | - David Pflieger
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR7156, Strasbourg 67083, France
| | - Sirine Souali-Crespo
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR7156, Strasbourg 67083, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR7156, Strasbourg 67083, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR7156, Strasbourg 67083, France
| |
Collapse
|
9
|
Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J Genet Genomics 2015; 42:195-205. [PMID: 26059768 DOI: 10.1016/j.jgg.2015.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/21/2022]
Abstract
The importance of pyrimidines lies in the fact that they are structural components of a broad spectrum of key molecules that participate in diverse cellular functions, such as synthesis of DNA, RNA, lipids, and carbohydrates. Pyrimidine metabolism encompasses all enzymes involved in the synthesis, degradation, salvage, interconversion and transport of these molecules. In this review, we summarize recent publications that document how pyrimidine metabolism changes under a variety of conditions, including, when possible, those studies based on techniques of genomics, transcriptomics, proteomics, and metabolomics. First, we briefly look at the dynamics of pyrimidine metabolism during nonpathogenic cellular events. We then focus on changes that pathogen infections cause in the pyrimidine metabolism of their host. Next, we discuss the effects of antimetabolites and inhibitors, and finally we consider the consequences of genetic manipulations, such as knock-downs, knock-outs, and knock-ins, of pyrimidine enzymes on pyrimidine metabolism in the cell.
Collapse
|
10
|
|