1
|
Cano-Domínguez N, Callejas-Negrete OA, Pérez-Mozqueda LL, Martínez-Andrade JM, Delgado-Álvarez DL, Castro-Longoria E. The small Ras-like GTPase BUD-1 modulates conidial germination and hyphal growth guidance in the filamentous fungus Neurospora crassa. Fungal Genet Biol 2023; 168:103824. [PMID: 37454888 DOI: 10.1016/j.fgb.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In filamentous fungi, the hypha orientation is essential for polarized growth and morphogenesis. The ability to re-orient tip growth in response to environmental cues is critical for the colony survival. Therefore, hyphal tip orientation and tip extension are distinct mechanisms that operate in parallel during filamentous growth. In yeast, the axial growth orientation requires a pathway regulated by Rsr1p/Bud1p, a Ras-like GTPase protein, which determines the axial budding pattern. However, in filamentous fungi the function of the Rsr1/Bud1p gene (krev-1 homolog) has not been completely characterized. In this work, we characterized the phenotype of a homokaryon mutant Bud1p orthologous in Neurospora crassa (△bud-1) and tagged BUD-1 with the green fluorescent protein (GFP) to determine its localization and cell dynamics under confocal microscopy. During spore germination BUD-1 was localized at specific points along the plasma membrane and during germ tube emergence it was located at the tip of the germ tubes. In mature hyphae BUD-1 continued to be located at the cell tip and was also present at sites of branch emergence and at the time of septum formation. The △bud-1 mutant showed a delayed germination, and the orientation of hyphae was somewhat disrupted. Also, the hypha diameter was reduced approximately 37 % with respect to the wild type. The lack of BUD-1 affected the Spitzenkörper (Spk) formation, trajectory, the localization of polarisome components BNI-1 and SPA-2, and the actin cytoskeleton polarization. The results presented here suggest that BUD-1 participates in the establishment of a new polarity axis. It may also mediate the delivery of secretory vesicles for the efficient construction of new plasma membrane and cell wall.
Collapse
Affiliation(s)
- Nallely Cano-Domínguez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico; Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Olga A Callejas-Negrete
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Luis L Pérez-Mozqueda
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico; Center for Wine and Vine Studies (CEVIT), Technical and Higher Education Center (CETYS), Ensenada, Baja California, Mexico
| | - Juan M Martínez-Andrade
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Diego L Delgado-Álvarez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico.
| |
Collapse
|
2
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Schumann MR, Brandt U, Adis C, Hartung L, Fleißner A. Plasma Membrane Integrity During Cell-Cell Fusion and in Response to Pore-Forming Drugs Is Promoted by the Penta-EF-Hand Protein PEF1 in Neurospora crassa. Genetics 2019; 213:195-211. [PMID: 31270133 PMCID: PMC6727798 DOI: 10.1534/genetics.119.302363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Plasma membrane damage commonly occurs during cellular growth and development. To counteract these potentially lethal injuries, membrane repair mechanisms have evolved, which promote the integrity of the lipid bilayer. Although the membrane of fungi is the target of important clinical drugs and agricultural fungicides, the molecular mechanisms which mediate membrane repair in these organisms remain elusive. Here we identify the penta-EF-hand protein PEF1 of the genetic model fungus Neurospora crassa as part of a cellular response mechanism against different types of membrane injury. Deletion of the pef1 gene in the wild type and different lysis-prone gene knockout mutants revealed a function of the protein in maintaining cell integrity during cell-cell fusion and in the presence of pore-forming drugs, such as the plant defense compound tomatine. By fluorescence and live-cell imaging we show that green fluorescent protein (GFP)-tagged PEF1 accumulates at the sites of membrane injury in a Ca2+-dependent manner. Site-directed mutagenesis identified Ca2+-binding domains essential for the spatial dynamics and function of the protein. In addition, the subcellular localization of PEF1 revealed that the syncytial fungal colony undergoes compartmentation in response to antifungal treatment. We propose that plasma membrane repair in fungi constitutes an additional line of defense against membrane-disturbing drugs, thereby expanding the current model of fungal drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Christian Adis
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Lisa Hartung
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| |
Collapse
|
4
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
5
|
Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 2018; 209:489-506. [PMID: 29678830 DOI: 10.1534/genetics.118.300904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in N. crassa: the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross-talk between the MAK-1 and MAK-2 pathways, which is likely necessary for coordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAPK pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, but it is unclear what targets ADV-1. We did RNA sequencing on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-affinity purification sequencing for N. crassa To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1/ADV-1 and MAK-2/PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.
Collapse
|
6
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
7
|
Lopez-Moya F, Kowbel D, Nueda MJ, Palma-Guerrero J, Glass NL, Lopez-Llorca LV. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan. MOLECULAR BIOSYSTEMS 2016; 12:391-403. [PMID: 26694141 PMCID: PMC4729629 DOI: 10.1039/c5mb00649j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca(2+) increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca(2+) in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Maria José Nueda
- Statistics and Operation Research Department, University of Alicante, E-03080 Alicante, Spain.
| | - Javier Palma-Guerrero
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
8
|
Cell fusion in Neurospora crassa. Curr Opin Microbiol 2015; 28:53-9. [DOI: 10.1016/j.mib.2015.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|