1
|
Ramírez-Zavala B, Hoffmann A, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. Probing gene function in Candida albicans wild-type strains by Cas9-facilitated one-step integration of two dominant selection markers: a systematic analysis of recombination events at the target locus. mSphere 2024; 9:e0038824. [PMID: 38940507 PMCID: PMC11288041 DOI: 10.1128/msphere.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.
Collapse
Affiliation(s)
| | - Anna Hoffmann
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katherine S. Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis. mSphere 2022; 7:e0039322. [PMID: 36416551 PMCID: PMC9769790 DOI: 10.1128/msphere.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9. IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.
Collapse
|
3
|
Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. J Fungi (Basel) 2022; 8:jof8070650. [PMID: 35887406 PMCID: PMC9323731 DOI: 10.3390/jof8070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans displays frequent genomic rearrangements, in particular loss-of-heterozygosity (LOH) events, which can be seen on all eight chromosomes and affect both laboratory and clinical strains. LOHs, which are often the consequence of DNA damage repair, can be observed upon stresses reminiscent of the host environment, and result in homozygous regions of various sizes depending on the molecular mechanisms at their origins. Recent studies have shed light on the biological importance of these frequent and ubiquitous LOH events in C. albicans. In diploid Saccharomyces cerevisiae, LOH facilitates the passage of recessive beneficial mutations through Haldane’s sieve, allowing rapid evolutionary adaptation. This also appears to be true in C. albicans, where the full potential of an adaptive mutation is often only observed upon LOH, as illustrated in the case of antifungal resistance and niche adaptation. To understand the genome-wide dynamics of LOH events in C. albicans, we constructed a collection of 15 strains, each one carrying a LOH reporter system on a different chromosome arm. This system involves the insertion of two fluorescent marker genes in a neutral genomic region on both homologs, allowing spontaneous LOH events to be detected by monitoring the loss of one of the fluorescent markers using flow cytometry. Using this collection, we observed significant LOH frequency differences between genomic loci in standard laboratory growth conditions; however, we further demonstrated that comparable heterogeneity was also observed for a given genomic locus between independent strains. Additionally, upon exposure to stress, three outcomes could be observed in C. albicans, where individual strains displayed increases, decreases, or no effect of stress in terms of LOH frequency. Our results argue against a general stress response triggering overall genome instability. Indeed, we showed that the heterogeneity of LOH frequency in C. albicans is present at various levels, inter-strain, intra-strain, and inter-chromosomes, suggesting that LOH events may occur stochastically within a cell, though the genetic background potentially impacts genome stability in terms of LOH throughout the genome in both basal and stress conditions. This heterogeneity in terms of genome stability may serve as an important adaptive strategy for the predominantly clonal human opportunistic pathogen C. albicans, by quickly generating a wide spectrum of genetic variation combinations potentially permitting subsistence in a rapidly evolving environment.
Collapse
|
4
|
Sitterlé E, Coste AT, Obadia T, Maufrais C, Chauvel M, Sertour N, Sanglard D, Puel A, D'Enfert C, Bougnoux ME. Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. J Antimicrob Chemother 2021; 75:835-848. [PMID: 31923309 DOI: 10.1093/jac/dkz537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The genome of Candida albicans displays significant polymorphism. Point mutations in genes involved in resistance to antifungals may either confer phenotypic resistance or be devoid of phenotypic consequences. OBJECTIVES To catalogue polymorphisms in azole and echinocandin resistance genes occurring in susceptible strains in order to rapidly pinpoint relevant mutations in resistant strains. METHODS Genome sequences from 151 unrelated C. albicans strains susceptible to fluconazole and caspofungin were used to create a catalogue of non-synonymous polymorphisms in genes involved in resistance to azoles (ERG11, TAC1, MRR1 and UPC2) or echinocandins (FKS1). The potential of this catalogue to reveal putative resistance mutations was tested in 10 azole-resistant isolates, including 1 intermediate to caspofungin. Selected mutations were analysed by mutagenesis experiments or mutational prediction effect. RESULTS In the susceptible strains, we identified 126 amino acid substitutions constituting the catalogue of phenotypically neutral polymorphisms. By excluding these neutral substitutions, we identified 22 additional substitutions in the 10 resistant strains. Among these substitutions, 10 had already been associated with resistance. The remaining 12 were in Tac1p (n = 6), Upc2p (n = 2) and Erg11p (n = 4). Four out of the six homozygous substitutions in Tac1p (H263Y, A790V, H839Y and P971S) conferred increases in azole MICs, while no effects were observed for those in Upc2p. Additionally, two homozygous substitutions (Y64H and P236S) had a predicted conformation effect on Erg11p. CONCLUSIONS By establishing a catalogue of neutral polymorphisms occurring in genes involved in resistance to antifungal drugs, we provide a useful resource for rapid identification of mutations possibly responsible for phenotypic resistance in C. albicans.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Alix T Coste
- Institut de Microbiologie, Université de Lausanne et Centre Hospitalo-Universitaire, Lausanne, Switzerland
| | - Thomas Obadia
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France.,Unité Malaria: parasites et hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Corinne Maufrais
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Natacha Sertour
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Dominique Sanglard
- Institut de Microbiologie, Université de Lausanne et Centre Hospitalo-Universitaire, Lausanne, Switzerland
| | - Anne Puel
- Laboratoire de génétique humaine des maladies infectieuses, Necker, INSERM U1163, Paris, France.,Université Paris Descartes, Institut Imagine, Paris, France
| | - Christophe D'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC2019 INRA, Paris, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
5
|
Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192. [PMID: 33178631 PMCID: PMC7596589 DOI: 10.3389/fcimb.2020.582192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Leishmania (Viannia) braziliensis is an important Leishmania species circulating in several Central and South American countries. Among Leishmania species circulating in Brazil, Argentina and Colombia, L. braziliensis has the highest genomic variability. However, genomic variability at the whole genome level has been only studied in Brazilian and Peruvian isolates; to date, no Colombian isolates have been studied. Considering that in Colombia, L. braziliensis is a species with great clinical and therapeutic relevance, as well as the role of genetic variability in the epidemiology of leishmaniasis, we analyzed and evaluated intraspecific genomic variability of L. braziliensis from Colombian and Bolivian isolates and compared them with Brazilian isolates. Twenty-one genomes were analyzed, six from Colombian patients, one from a Bolivian patient, and 14 Brazilian isolates downloaded from public databases. The results obtained of Phylogenomic analysis showed the existence of four well-supported clades, which evidenced intraspecific variability. The whole-genome analysis revealed structural variations in the somy, mainly in the Brazilian genomes (clade 1 and clade 3), low copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs) in all genomes analyzed. Interestingly, the genomes belonging to clades 2 and 3 from Colombia and Brazil, respectively, were characterized by low heterozygosity (~90% of SNP loci were homozygous) and regions suggestive of loss of heterozygosity (LOH). Additionally, we observed the drastic whole genome loss of heterozygosity and possible hybridization events in one genome belonging to clade 4. Unique/shared SNPs between and within the four clades were identified, revealing the importance of some of them in biological processes of L. braziliensis. Our analyses demonstrate high genomic variability of L. braziliensis in different regions of South America, mainly in Colombia and suggest that this species exhibits striking genomic diversity and a capacity of genomic hybridization; additionally, this is the first study to report whole-genome sequences of Colombian L. braziliensis isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Marton T, Maufrais C, d'Enfert C, Legrand M. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. mSphere 2020; 5:e00620-20. [PMID: 32878930 PMCID: PMC7471004 DOI: 10.1128/msphere.00620-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Most of our knowledge relating to molecular mechanisms of human fungal pathogenesis in Candida albicans relies on reverse genetics approaches, requiring strain engineering. DNA-mediated transformation of C. albicans has been described as highly mutagenic, potentially accentuated by the organism's genome plasticity, including the acquisition of genomic rearrangements, notably upon exposure to stress. The advent of CRISPR-Cas9 has vastly accelerated the process of genetically modifying strains, especially in diploid (such as C. albicans) and polyploid organisms. The effects of unleashing this nuclease within the genome of C. albicans are unknown, although several studies in other organisms report Cas9-associated toxicity and off-target DNA breaks. Upon the construction of a C. albicans strain collection, we took the opportunity to compare strains which were constructed using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation strategies, by quantifying and describing transformation-induced loss-of-heterozygosity and hyperploidy events. Our analysis of 57 strains highlights the mutagenic effects of transformation in C. albicans, regardless of the transformation protocol, but also underscores interesting differences in terms of genomic changes between strains obtained using different transformation protocols. Indeed, although strains constructed using the CRISPR-Cas9-free transformation method display numerous concomitant genomic changes randomly distributed throughout their genomes, the use of CRISPR-Cas9 leads to a reduced overall number of genome changes, particularly hyperploidies. Overall, in addition to facilitating strain construction by reducing the number of transformation steps, the CRISPR-Cas9-dependent transformation strategy in C. albicans appears to limit transformation-associated genome changes.IMPORTANCE Genome editing is essential to nearly all research studies aimed at gaining insight into the molecular mechanisms underlying various biological processes, including those in the opportunistic pathogen Candida albicans The adaptation of the CRISPR-Cas9 system greatly facilitates genome engineering in many organisms. However, our understanding of the effects of CRISPR-Cas9 technology on the biology of C. albicans is limited. In this study, we sought to compare the extents of transformation-induced genomic changes within strains engineered using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation methods. CRISPR-Cas9-dependent transformation allows one to simultaneously target both homologs and, importantly, appears less mutagenic in C. albicans, since strains engineered using CRISPR-Cas9 display an overall decrease in concomitant genomic changes.
Collapse
Affiliation(s)
- Timea Marton
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Melanie Legrand
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
7
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
8
|
Abstract
Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion. Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade. IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.
Collapse
|
9
|
Ksiezopolska E, Gabaldón T. Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes (Basel) 2018; 9:genes9090461. [PMID: 30235884 PMCID: PMC6162425 DOI: 10.3390/genes9090461] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Fungal infections, such as candidiasis caused by Candida, pose a problem of growing medical concern. In developed countries, the incidence of Candida infections is increasing due to the higher survival of susceptible populations, such as immunocompromised patients or the elderly. Existing treatment options are limited to few antifungal drug families with efficacies that vary depending on the infecting species. In this context, the emergence and spread of resistant Candida isolates are being increasingly reported. Understanding how resistance can evolve within naturally susceptible species is key to developing novel, more effective treatment strategies. However, in contrast to the situation of antibiotic resistance in bacteria, few studies have focused on the evolutionary mechanisms leading to drug resistance in fungal species. In this review, we will survey and discuss current knowledge on the genetic bases of resistance to antifungal drugs in Candida opportunistic pathogens. We will do so from an evolutionary genomics perspective, focusing on the possible evolutionary paths that may lead to the emergence and selection of the resistant phenotype. Finally, we will discuss the potential of future studies enabled by current developments in sequencing technologies, in vitro evolution approaches, and the analysis of serial clinical isolates.
Collapse
Affiliation(s)
- Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
10
|
Wertheimer NB, Stone N, Berman J. Ploidy dynamics and evolvability in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0461. [PMID: 28080987 PMCID: PMC5095540 DOI: 10.1098/rstb.2015.0461] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Rapid responses to acute stresses are essential for stress survival and are critical to the ability of fungal pathogens to adapt to new environments or hosts. The rapid emergence of drug resistance is used as a model for how fungi adapt and survive stress conditions that inhibit the growth of progenitor cells. Aneuploidy and loss of heterozygosity (LOH), which are large-scale genome shifts involving whole chromosomes or chromosome arms, occur at higher frequency than point mutations and have the potential to mediate stress survival. Furthermore, the stress of exposure to an antifungal drug can induce elevated levels of LOH and can promote the formation of aneuploids. This occurs via mitotic defects that first produce tetraploid progeny with extra spindles, followed by chromosome mis-segregation. Thus, drug exposure induces elevated levels of aneuploidy, which can alter the copy number of genes that improve survival in a given stress or drug. Selection then acts to increase the proportion of adaptive aneuploids in the population. Because aneuploidy is a common property of many pathogenic fungi, including those posing emerging threats to plants, animals and humans, we propose that aneuploid formation and LOH often accompanying it contribute to the rapid generation of diversity that can facilitate the emergence of fungal pathogens to new environmental niches and/or new hosts, as well as promote antifungal drug resistance that makes emerging fungal infections ever more difficult to contain.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Noa Blutraich Wertheimer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| | - Neil Stone
- Institute of Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| |
Collapse
|
11
|
Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans. mSphere 2017; 2:mSphere00167-17. [PMID: 28808688 PMCID: PMC5549176 DOI: 10.1128/msphere.00167-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
Regulated erroneous protein translation (adaptive mistranslation) increases proteome diversity and produces advantageous phenotypic variability in the human pathogen Candida albicans. It also increases fitness in the presence of fluconazole, but the underlying molecular mechanism is not understood. To address this question, we evolved hypermistranslating and wild-type strains in the absence and presence of fluconazole and compared their fluconazole tolerance and resistance trajectories during evolution. The data show that mistranslation increases tolerance and accelerates the acquisition of resistance to fluconazole. Genome sequencing, array-based comparative genome analysis, and gene expression profiling revealed that during the course of evolution in fluconazole, the range of mutational and gene deregulation differences was distinctively different and broader in the hypermistranslating strain, including multiple chromosome duplications, partial chromosome deletions, and polyploidy. Especially, the increased accumulation of loss-of-heterozygosity events, aneuploidy, translational and cell surface modifications, and differences in drug efflux seem to mediate more rapid drug resistance acquisition under mistranslation. Our observations support a pivotal role for adaptive mistranslation in the evolution of drug resistance in C. albicans. IMPORTANCE Infectious diseases caused by drug-resistant fungi are an increasing threat to public health because of the high mortality rates and high costs associated with treatment. Thus, understanding of the molecular mechanisms of drug resistance is of crucial interest for the medical community. Here we investigated the role of regulated protein mistranslation, a characteristic mechanism used by C. albicans to diversify its proteome, in the evolution of fluconazole resistance. Such codon ambiguity is usually considered highly deleterious, yet recent studies found that mistranslation can boost adaptation in stressful environments. Our data reveal that CUG ambiguity diversifies the genome in multiple ways and that the full spectrum of drug resistance mechanisms in C. albicans goes beyond the traditional pathways that either regulate drug efflux or alter the interactions of drugs with their targets. The present work opens new avenues to understand the molecular and genetic basis of microbial drug resistance.
Collapse
|
12
|
Ramírez-Zavala B, Mottola A, Haubenreißer J, Schneider S, Allert S, Brunke S, Ohlsen K, Hube B, Morschhäuser J. The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans. Mol Microbiol 2017; 104:989-1007. [PMID: 28337802 DOI: 10.1111/mmi.13674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
Abstract
The metabolic flexibility of the opportunistic fungal pathogen Candida albicans is important for colonisation and infection of different host niches. Complex regulatory networks, in which protein kinases play central roles, link metabolism and other virulence-associated traits, such as filamentous growth and stress resistance, and thereby control commensalism and pathogenicity. By screening a protein kinase deletion mutant library that was generated in the present work using an improved SAT1 flipper cassette, we found that the previously uncharacterised kinase Sak1 is a key upstream activator of the protein kinase Snf1, a highly conserved regulator of nutrient stress responses that is essential for viability in C. albicans. The sak1Δ mutants failed to grow on many alternative carbon sources and were hypersensitive to cell wall/membrane stress. These phenotypes were mirrored in mutants lacking other subunits of the SNF1 complex and partially compensated by a hyperactive form of Snf1. Transcriptional profiling of sak1Δ mutants showed that Sak1 ensures basal expression of glyoxylate cycle and gluconeogenesis genes even in glucose-rich media and thereby contributes to the metabolic plasticity of C. albicans. In a mouse model of gastrointestinal colonisation, sak1Δ mutants were rapidly outcompeted by wild-type cells, demonstrating that Sak1 is essential for the in vivo fitness of C. albicans.
Collapse
Affiliation(s)
| | - Austin Mottola
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julia Haubenreißer
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sabrina Schneider
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Moorhouse AJ, Rennison C, Raza M, Lilic D, Gow NAR. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients. PLoS One 2016; 11:e0145888. [PMID: 26849050 PMCID: PMC4743940 DOI: 10.1371/journal.pone.0145888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC.
Collapse
Affiliation(s)
- Alexander J. Moorhouse
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| | - Claire Rennison
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muhammad Raza
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Desa Lilic
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 2015; 4:e00662. [PMID: 25646566 PMCID: PMC4383195 DOI: 10.7554/elife.00662] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is both a member of the healthy human microbiome
and a major pathogen in immunocompromised individuals. Infections are typically
treated with azole inhibitors of ergosterol biosynthesis often leading to drug
resistance. Studies in clinical isolates have implicated multiple mechanisms in
resistance, but have focused on large-scale aberrations or candidate genes, and do
not comprehensively chart the genetic basis of adaptation. Here, we leveraged
next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients.
We detected newly selected mutations, including single-nucleotide polymorphisms
(SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events
were commonly associated with acquired resistance, and SNPs in 240 genes may be
related to host adaptation. Conversely, most aneuploidies were transient and did not
correlate with drug resistance. Our analysis also shows that isolates also varied in
adherence, filamentation, and virulence. Our work reveals new molecular mechanisms
underlying the evolution of drug resistance and host adaptation. DOI:http://dx.doi.org/10.7554/eLife.00662.001 Nearly all humans are infected with the fungus Candida albicans. In
most people, the infection does not produce any symptoms because their immune system
is able to counteract the fungus' attempts to spread around the body. However, if the
balance between fungal attack and body defence fails, the fungus is able to spread,
which can lead to serious disease that is fatal in 42% of cases. How does C. albicans outcompete the body's defences to cause
disease? This is a pertinent question because the most effective antifungal
medicines—including the drug fluconazole—do not kill the fungus; they
only stop it from growing. This gives the fungus time to develop resistance to the
drug by becoming able to quickly replace the fungal proteins the drug destroys, or to
efficiently remove the drug from its cells. In this study, Ford et al. studied the changes that occur in the DNA of C.
albicans over time in patients who are being treated with fluconazole.
Ford et al. took 43 samples of C. albicans from 11 patients with
weakened immune systems. The experiments show that the fungus samples collected early
on were more sensitive to the drug than the samples collected later. In most cases, the genetic data suggest that the infections begin with a single
fungal cell; the cells in the later samples are its offspring. Despite this, there is
a lot of genetic variation between samples from the same patient, which indicates
that the fungus is under pressure to become more resistant to the drug. There were
240 genes—including those that can alter the surface on the fungus cells to
make it better at evading the host immune system—in which small changes
occurred over time in three or more patients. Laboratory tests revealed that many of
these genes are likely important for the fungus to survive in an animal host in the
presence of the drug. C. albicans cells usually have two genetically distinct copies of
every gene. Ford et al. found that for some genes—including some that make
surface components or are involved in expelling drugs from cells—the loss of
genetic information from one copy, so that both copies become identical, is linked to
resistance to fluconazole. However, the gain of whole or partial
chromosomes—which contain large numbers of genes—is not linked to
resistance, but may provide additional genetic material for generating diversity in
the yeast population that may help the cells to evolve resistance in the future. These experiments have identified many new candidate genes that are important for
drug resistance and evading the host immune system, and which could be used to guide
the development of new therapeutics to treat these life-threatening infections. DOI:http://dx.doi.org/10.7554/eLife.00662.002
Collapse
Affiliation(s)
- Christopher B Ford
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jason M Funt
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Luca Issi
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | | | | | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Bi Yu Li
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Theodore C White
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, United States
| | - Christina Cuomo
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Aviv Regev
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
15
|
Gómez-Raja J, Larriba G. Reprint of Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 95:448-54. [PMID: 24055541 DOI: 10.1016/j.mimet.2013.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
16
|
Dynamic transcript profiling of Candida albicans infection in zebrafish: a pathogen-host interaction study. PLoS One 2013; 8:e72483. [PMID: 24019870 PMCID: PMC3760836 DOI: 10.1371/journal.pone.0072483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/10/2013] [Indexed: 01/23/2023] Open
Abstract
Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis.
Collapse
|
17
|
Gómez-Raja J, Larriba G. Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 94:47-53. [PMID: 23631908 DOI: 10.1016/j.mimet.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
18
|
Sasse C, Dunkel N, Schäfer T, Schneider S, Dierolf F, Ohlsen K, Morschhäuser J. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol Microbiol 2012; 86:539-56. [PMID: 22924823 DOI: 10.1111/j.1365-2958.2012.08210.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 01/12/2023]
Abstract
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1, Tac1 and Upc2, which result in constitutive overexpression of multidrug efflux pumps and ergosterol biosynthesis genes respectively. It is not known how the permanently changed gene expression program in resistant strains affects their fitness in the absence of drug selection pressure. We have systematically investigated the effects of activating mutations in Mrr1, Tac1 and Upc2, individually and in all possible combinations, on the degree of fluconazole resistance and on the fitness of C. albicans in an isogenic strain background. All combinations of different resistance mechanisms resulted in a stepwise increase in drug resistance, culminating in 500-fold increased fluconazole resistance in strains possessing mutations in the three transcription factors and an additional resistance mutation in the drug target enzyme Erg11. The acquisition of resistance mutations was associated with reduced fitness under non-selective conditions in vitro as well as in vivo during colonization of a mammalian host. Therefore, without compensatory mutations, the inability to appropriately regulate gene expression results in a loss of competitive fitness of drug-resistant C. albicans strains.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Berman J, Hadany L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet 2012; 28:197-203. [PMID: 22364928 DOI: 10.1016/j.tig.2012.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/09/2023]
Abstract
Theory predicts that stress is a key factor in explaining the evolutionary role of sex in facultatively sexual organisms, including microorganisms. Organisms capable of reproducing both sexually and asexually are expected to mate more frequently when stressed, and such stress-induced mating is predicted to facilitate adaptation. Here, we propose that stress has an analogous effect on the parasexual cycle in Candida albicans, which involves alternation of generations between diploid and tetraploid cells. The parasexual cycle can generate high levels of diversity, including aneuploidy, yet it apparently occurs only rarely in nature. We review the evidence that stress facilitates four major steps in the parasexual cycle and suggest that parasex occurs much more frequently under stress conditions. This may explain both the evolutionary significance of parasex and its apparent rarity.
Collapse
Affiliation(s)
- Judith Berman
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|