1
|
Rivas M, Fox GE. Ancestry of RNA/RNA interaction regions within segmented ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1388-1399. [PMID: 37263782 PMCID: PMC10573304 DOI: 10.1261/rna.079654.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
The ribosome is the universally conserved ribozyme that translates DNA coded instructions into proteins with the assistance of other RNA molecules, including transfer and messenger RNAs. Of particular interest is the segmentation phenomena, which is found in trypanosomatids and other protists. In these organisms, the large subunit ribosomal RNA is assembled from multiple smaller RNAs. This phenomenon posits several challenges to the folding and stabilization of such ribosomes to retain functionality and efficiency. In earlier studies, RNA/protein interactions were suggested to fully compensate for the fragmentation. Recently, several conserved RNA/RNA interaction regions were described in the cryo-EM structures of segmented ribosomes from trypanosomatids. These regions also seemed to aid in the folding and stabilization of such ribosomes, even before the ribosomal proteins start their association. In the present study, the existence of conserved RNA/RNA interaction regions shared between trypanosomatid and Euglena gracilis segmented ribosomes was confirmed, despite differences in segmentation patterns. Analysis of the crystallographic structures of unsegmented ribosomes from other Eukaryotes, Bacteria, and Archaea allowed us to estimate the relative age of highly conserved RNA/RNA interaction regions. These results strongly suggest that common interaction regions likely date far back into the ribosomes of the last common ancestor. Results also revealed that single hydrogen bonds are overwhelmingly facilitated by the 2'OH, a distinctive RNA feature. This supports the notion that RNA predates DNA and places some constraints on alternative nucleic acids proposals.
Collapse
Affiliation(s)
- Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| |
Collapse
|
2
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
3
|
Rivas M, Fox GE. Nonstandard RNA/RNA interactions likely enhance folding and stability of segmented ribosomes. RNA (NEW YORK, N.Y.) 2022; 28:340-352. [PMID: 34876487 PMCID: PMC8848935 DOI: 10.1261/rna.079006.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/26/2021] [Indexed: 05/21/2023]
Abstract
The ribosome is the molecular factory that catalyzes all coded protein synthesis in extant organisms. Eukaryotic ribosomes are typically assembled out of four rRNAs; namely, 5S, 5.8S, 18S, and 28S. However, the 28S rRNA of some trypanosomatid organisms has been found to be segmented into six independent rRNAs of different sizes. The two largest segments have multiple sites where they jointly form stems comprised of standard base pairs that can hold them together. However, such regions of interaction are not observed among the four smaller RNAs. Early reports suggested that trypanosomatid segmented ribosome assembly was essentially achieved thanks to their association with rProteins. However, examination of cryo-EM ribosomal structures from Trypanosoma brucei, Leishmania donovani, and Trypanosoma cruzi reveals several long-range nonstandard RNA/RNA interactions. Most of these interactions are clusters of individual hydrogen bonds and so are not readily predictable. However, taken as a whole, they represent significant stabilizing energy that likely facilitates rRNA assembly and the overall stability of the segmented ribosomes. In the context of origin of life studies, the current results provide a better understanding of the true nature of RNA sequence space and what might be possible without an RNA replicase.
Collapse
Affiliation(s)
- Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
4
|
The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei. Sci Rep 2021; 11:18325. [PMID: 34526538 PMCID: PMC8443567 DOI: 10.1038/s41598-021-97020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.
Collapse
|
5
|
Trypanosoma brucei L11 Is Essential to Ribosome Biogenesis and Interacts with the Kinetoplastid-Specific Proteins P34 and P37. mSphere 2019; 4:4/4/e00475-19. [PMID: 31434747 PMCID: PMC6706469 DOI: 10.1128/msphere.00475-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eukaryotic ribosome biogenesis is an essential cellular process involving tightly coordinated assembly of multiple rRNA and protein components. Much of our understanding of this pathway has come from studies performed with yeast model systems. These studies have identified critical checkpoints in the maturation of the large ribosomal subunit (LSU/60S), one of which is the proper formation and incorporation of the 5S ribonucleoprotein complex (5S RNP). Research on the 5S RNP has identified a complex containing the four proteins L5, L11, Rpf2, and Rrs1 as well as 5S rRNA. Our laboratory has studied the 5S RNP in Trypanosoma brucei, a eukaryotic parasite, and identified the proteins P34 and P37 as essential, parasite-specific members of this complex. We have additionally identified homologues of L5, Rpf2, Rrs1, and 5S rRNA in T. brucei and characterized their roles in this essential process. In this study, we examined the T. brucei homologue of ribosomal protein L11 as a member of the 5S RNP. We showed that TbL11 is essential and that it is important for proper ribosome subunit formation and 60S rRNA processing. Additionally, we identified TbL11 interactions with TbL5 and TbRpf2, as well as novel interactions with the kinetoplast-specific proteins P34 and P37. These findings expand our understanding of a crucial process outside the context of model yeast organisms and highlight differences in an otherwise highly conserved process that could be used to develop future treatments against T. brucei IMPORTANCE The human-pathogenic, eukaryotic parasite Trypanosoma brucei causes human and animal African trypanosomiases. Treatments for T. brucei suffer from numerous hurdles, including adverse side effects and developing resistance. Ribosome biogenesis is one critical process for T. brucei survival that could be targeted for new drug development. A critical checkpoint in ribosome biogenesis is formation of the 5S RNP, which we have shown involves the trypanosome-specific proteins P34 and P37 as well as homologues of Rpf2, Rrs1, and L5. We have identified parasite-specific characteristics of these proteins and involvement in key parts of ribosome biogenesis, making them candidates for future drug development. In this work, we characterized the T. brucei homologue of ribosomal protein L11. We show that it is essential for parasite survival and is involved in ribosome biogenesis and rRNA processing. Furthermore, we identified novel interactions with P34 and P37, characteristics that make this protein a potential target for novel chemotherapeutics.
Collapse
|
6
|
Trypanosoma brucei Homologue of Regulator of Ribosome Synthesis 1 (Rrs1) Has Direct Interactions with Essential Trypanosome-Specific Proteins. mSphere 2019; 4:4/4/e00453-19. [PMID: 31391282 PMCID: PMC6686231 DOI: 10.1128/msphere.00453-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development. Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCETrypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.
Collapse
|
7
|
The Nuclear Export Receptors TbMex67 and TbMtr2 Are Required for Ribosome Biogenesis in Trypanosoma brucei. mSphere 2019; 4:4/4/e00343-19. [PMID: 31270172 PMCID: PMC6609230 DOI: 10.1128/msphere.00343-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite. Ribosomal maturation is a complex and highly conserved biological process involving migration of a continuously changing RNP across multiple cellular compartments. A critical point in this process is the translocation of individual ribosomal subunits (60S and 40S) from the nucleus to the cytoplasm, and a number of export factors participate in this process. In this study, we characterize the functional role of the auxiliary export receptors TbMex67 and TbMtr2 in ribosome biogenesis in the parasite Trypanosoma brucei. We demonstrate that depletion of each of these proteins dramatically impacts the steady-state levels of other proteins involved in ribosome biogenesis, including the trypanosome-specific factors P34 and P37. In addition, we observe that the loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation. Although the TbMex67-TbMtr2 heterodimer is structurally distinct from Mex67-Mtr2 complexes previously studied, our data show that they retain a conserved function in ribosome biogenesis. IMPORTANCE The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite.
Collapse
|
8
|
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8:cells8050421. [PMID: 31071985 PMCID: PMC6562600 DOI: 10.3390/cells8050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is the conspicuous nuclear body where ribosomal RNA genes are transcribed by RNA polymerase I, pre-ribosomal RNA is processed, and ribosomal subunits are assembled. Other important functions have been attributed to the nucleolus over the years. Here we review the current knowledge about the structure and function of the nucleolus in the trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania ssp., which represent one of the earliest branching lineages among the eukaryotes. These protozoan parasites present a single nucleolus that is preserved throughout the closed nuclear division, and that seems to lack fibrillar centers. Trypanosomatids possess a relatively low number of rRNA genes, which encode rRNA molecules that contain large expansion segments, including several that are trypanosomatid-specific. Notably, the large subunit rRNA (28S-type) is fragmented into two large and four small rRNA species. Hence, compared to other organisms, the rRNA primary transcript requires additional processing steps in trypanosomatids. Accordingly, this group of parasites contains the highest number ever reported of snoRNAs that participate in rRNA processing. The number of modified rRNA nucleotides in trypanosomatids is also higher than in other organisms. Regarding the structure and biogenesis of the ribosomes, recent cryo-electron microscopy analyses have revealed several trypanosomatid-specific features that are discussed here. Additional functions of the nucleolus in trypanosomatids are also reviewed.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico.
| |
Collapse
|
9
|
Shan F, Mei S, Zhang J, Zhang X, Xu C, Liao S, Tu X. A telomerase subunit homolog La protein from
Trypanosoma brucei
plays an essential role in ribosomal biogenesis. FEBS J 2019; 286:3129-3147. [DOI: 10.1111/febs.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Song Mei
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | | | - Chao Xu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| |
Collapse
|
10
|
Cesaro G, Carneiro FRG, Ávila AR, Zanchin NIT, Guimarães BG. Trypanosoma brucei RRP44 is involved in an early stage of large ribosomal subunit RNA maturation. RNA Biol 2018; 16:133-143. [PMID: 30593255 DOI: 10.1080/15476286.2018.1564463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.
Collapse
Affiliation(s)
- Giovanna Cesaro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,b Biochemsitry Postgraduate Program , Federal University of Parana , Curitiba , Brazil
| | - Flávia Raquel Gonçalves Carneiro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,c Center for Technology Development in Healthcare , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
11
|
TbUTP10, a protein involved in early stages of pre-18S rRNA processing in Trypanosoma brucei. Mol Biochem Parasitol 2018; 225:84-93. [PMID: 30248370 DOI: 10.1016/j.molbiopara.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Ribosome biosynthesis, best studied in opisthokonts, is a highly complex process involving numerous protein and RNA factors. Yet, very little is known about the early stages of pre-18S rRNA processing even in these model organisms, let alone the conservation of this mechanism in other eukaryotes. Here we extend our knowledge of this process by identifying and characterizing the essential protein TbUTP10, a homolog of yeast U3 small nucleolar RNA-associated protein 10 - UTP10 (HEATR1 in human), in the excavate parasitic protist Trypanosoma brucei. We show that TbUTP10 localizes to the nucleolus and that its ablation by RNAi knock-down in two different T. brucei life cycle stages results in similar phenotypes: a disruption of pre-18S rRNA processing, exemplified by the accumulation of rRNA precursors, a reduction of mature 18S rRNA, and also a decrease in the level of U3 snoRNA. Moreover, polysome profiles of the RNAi-induced knock-down cells show a complete disappearance of the 40S ribosomal subunit, and a prominent accumulation of the 60S large ribosomal subunit, reflecting impaired ribosome assembly. Thus, TbUTP10 is an important protein in the processing of 18S rRNA.
Collapse
|
12
|
Brito Querido J, Mancera-Martínez E, Vicens Q, Bochler A, Chicher J, Simonetti A, Hashem Y. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure 2017; 25:1785-1794.e3. [DOI: 10.1016/j.str.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
|
13
|
Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei. mSphere 2017; 2:mSphere00394-17. [PMID: 29062898 PMCID: PMC5646243 DOI: 10.1128/msphere.00394-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023] Open
Abstract
Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei, the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T. brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei. IMPORTANCETrypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of the regulatory checkpoints during ribosome biogenesis. We have previously characterized the 5S RNP in T. brucei and showed that trypanosome-specific proteins P34 and P37 are part of this complex. In this study, we characterize for the first time the interactions of the homolog of the assembly factor Rpf2 with members of the 5S RNP in another organism besides fungi. Our studies show that Rpf2 is essential in T. brucei and that it forms unique interactions within the 5S RNP, particularly with P34 and P37. These studies have identified parasite-specific interactions that can potentially function as new therapeutic targets against sleeping sickness.
Collapse
|
14
|
Physiological and quantitative phosphoproteome analyses of drought stress-induced mechanisms in Malus baccata (L.) Borkh. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Kamina AD, Williams N. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP). PLoS One 2017; 12:e0177890. [PMID: 28542332 PMCID: PMC5436847 DOI: 10.1371/journal.pone.0177890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains’ interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.
Collapse
Affiliation(s)
- Anyango D. Kamina
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zhang X, Lai M, Chang W, Yu I, Ding K, Mrazek J, Ng HL, Yang OO, Maslov DA, Zhou ZH. Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Nat Commun 2016; 7:13223. [PMID: 27752045 PMCID: PMC5071889 DOI: 10.1038/ncomms13223] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome-targeting antibiotics. Here, by direct electron-counting cryoEM, we have determined the structures of the Leishmania donovani and human ribosomes at 2.9 Å and 3.6 Å, respectively. Our structure of the leishmanial ribosome elucidates the organization of the six fragments of its large subunit rRNA (as opposed to a single 28S rRNA in most eukaryotes, including humans) and reveals atomic details of a unique 20 amino acid extension of the uL13 protein that pins down the ends of three of the rRNA fragments. The structure also fashions many large rRNA expansion segments. Direct comparison of our human and leishmanial ribosome structures at the decoding A-site sheds light on how the bacterial ribosome-targeting drug paromomycin selectively inhibits the eukaryotic L. donovani, but not human, ribosome.
Collapse
Affiliation(s)
- Xing Zhang
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Mason Lai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Winston Chang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Ke Ding
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hwee L. Ng
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Otto O. Yang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Dmitri A. Maslov
- Department of Biology, University of California, Riverside, California 91521, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei. Sci Rep 2016; 6:21438. [PMID: 26888608 PMCID: PMC4757839 DOI: 10.1038/srep21438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments. In addition, recent studies have shown the presence of expansion segments in the large ribosomal subunit (60S) of Trypanosoma brucei. Given these differences in structure, processing and assembly, T. brucei ribosomes may require biogenesis factors not found in other organisms. Here, we show that one of two putative 3-methylcytidine methyltransferases, TbMTase37 (a homolog of human methyltransferase-like 6, METTL6), is important for ribosome stability in T. brucei. TbMTase37 localizes to the nucleolus and depletion of the protein results in accumulation of ribosomal particles lacking srRNA 4 and reduced levels of polysome associated ribosomes. We also find that TbMTase37 plays a role in cytokinesis, as loss of the protein leads to multi-flagellated and multi-nucleated cells.
Collapse
|
18
|
Umaer K, Williams N. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis. PLoS One 2015; 10:e0131323. [PMID: 26121669 PMCID: PMC4488245 DOI: 10.1371/journal.pone.0131323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|