1
|
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 2019; 116:22219-22228. [PMID: 31611373 DOI: 10.1073/pnas.1909844116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Collapse
|
2
|
Liang J, Huang H, Wang S. Distribution, Evolution, Catalytic Mechanism, and Physiological Functions of the Flavin-Based Electron-Bifurcating NADH-Dependent Reduced Ferredoxin: NADP + Oxidoreductase. Front Microbiol 2019; 10:373. [PMID: 30881354 PMCID: PMC6405883 DOI: 10.3389/fmicb.2019.00373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) is an electron-bifurcating enzyme first discovered in the strict anaerobes Clostridium kluyveri and Moorella thermoacetica. In vivo, Nfn catalyzes the endergonic reduction of NADP+ with NADH coupled to the exergonic reduction of NADP+ with reduced ferredoxin. Most Nfn homologs consist of two subunits, although in certain species Nfn homologs are fused. In contrast to other electron-bifurcating enzymes, Nfn possess a simpler structure. Therefore, Nfn becomes a perfect model to determine the mechanism of flavin-based electron bifurcation, which is a novel energy coupling mode distributed among anaerobic bacteria and archaea. The crystal structures of Nfn from Thermotoga maritima and Pyrococcus furiosus are known, and studies have shown that the FAD molecule of the NfnB (b-FAD) is the site of electron bifurcation, and other cofactors, including a [2Fe2S] cluster, two [4Fe4S] clusters, and the FAD molecule on the NfnA subunit, contribute to electron transfer. Further, the short-lived anionic flavin semiquinone (ASQ) state of b-FAD is essential for electron bifurcation. Nfn homologs are widely distributed among microbes, including bacteria, archaea, and probably eukaryotes, most of which are anaerobes despite that certain species are facultative microbes and even aerobes. Moreover, potential evidence shows that lateral gene transfer may occur in the evolution of this enzyme. Nfn homologs present four different structural patterns, including the well-characterized NfnAB and three different kinds of fused Nfn homologs whose detailed properties have not been characterized. These findings indicate that gene fusion/fission and gene rearrangement may contribute to the evolution of this enzyme. Under physiological conditions, Nfn catalyzes the reduction of NADP+ with NADH and reduced ferredoxin, which is then used in certain NADPH-dependent reactions. Deletion of nfn in several microbes causes low growth and redox unbalance and may influence the distribution of fermentation products. It’s also noteworthy that different Nfn homologs perform different functions according to its circumstance. Physiological functions of Nfn indicate that it can be a potential tool in the metabolic engineering of industrial microorganisms, which can regulate the redox potential in vivo.
Collapse
Affiliation(s)
- Jiyu Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Haiyan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 2018; 40:e1700242. [DOI: 10.1002/bies.201700242] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-UPF); Pg. Marítim de la Barceloneta, Barcelona ES 08003 Spain
| | - Laura Eme
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Courtney W. Stairs
- Department of Cell and Molecular Biology; Science for Life Laboratory; Uppsala University; Box 596, Uppsala SE 751 25 Sweden
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University; P.O. Box 15000, Halifax CAN B3H 4R2 Nova Scotia Canada
| |
Collapse
|
4
|
Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes. mBio 2017; 8:mBio.02022-17. [PMID: 29259088 PMCID: PMC5736913 DOI: 10.1128/mbio.02022-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marine Chloroflexi. Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenating Dehalococcoides.
Collapse
|
5
|
Nývltová E, Šut'ák R, Žárský V, Harant K, Hrdý I, Tachezy J. Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi. Environ Microbiol 2017; 19:1091-1102. [PMID: 27902886 DOI: 10.1111/1462-2920.13636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 12/01/2022]
Abstract
p-Cresol and indole are volatile biologically active products of the bacterial degradation of tyrosine and tryptophan respectively. They are typically produced by bacteria in animal intestines, soil and various sediments. Here, we demonstrate that the free-living eukaryote Mastigamoeba balamuthi and its pathogenic relative Entamoeba histolytica produce significant amounts of indole via tryptophanase activity. Unexpectedly, M. balamuthi also produces p-cresol in concentrations that are bacteriostatic to non-p-cresol-producing bacteria. The ability of M. balamuthi to produce p-cresol, which has not previously been observed in any eukaryotic microbe, was gained due to the lateral acquisition of a bacterial gene for 4-hydroxyphenylacetate decarboxylase (HPAD). In bacteria, the genes for HPAD and the S-adenosylmethionine-dependent activating enzyme (AE) are present in a common operon. In M. balamuthi, HPAD displays a unique fusion with the AE that suggests the operon-mediated transfer of genes from a bacterial donor. We also clarified that the tyrosine-to-4-hydroxyphenylacetate conversion proceeds via the Ehrlich pathway. The acquisition of the bacterial HPAD gene may provide M. balamuthi a competitive advantage over other microflora in its native habitat.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Robert Šut'ák
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Karel Harant
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
6
|
Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri. PLoS One 2015; 10:e0125324. [PMID: 25927230 PMCID: PMC4416025 DOI: 10.1371/journal.pone.0125324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/19/2015] [Indexed: 01/13/2023] Open
Abstract
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Collapse
Affiliation(s)
- Adam J. Cornish
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robin Green
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Katrin Gärtner
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Saundra Mason
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric L. Hegg
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Maguire F, Henriquez FL, Leonard G, Dacks JB, Brown MW, Richards TA. Complex patterns of gene fission in the eukaryotic folate biosynthesis pathway. Genome Biol Evol 2014; 6:2709-20. [PMID: 25252772 PMCID: PMC4224340 DOI: 10.1093/gbe/evu213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Finlay Maguire
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Fiona L Henriquez
- Infection and Microbiology Research Group, Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, Renfrewshire, United Kingdom
| | - Guy Leonard
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Joel B Dacks
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity
| |
Collapse
|
8
|
Xu F, Jerlström-Hultqvist J, Einarsson E, Ástvaldsson Á, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet 2014; 10:e1004053. [PMID: 24516394 PMCID: PMC3916229 DOI: 10.1371/journal.pgen.1004053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host. Studies of model organisms are very powerful. However, to appreciate the enormous diversity of genetic and cell biological processes we need to extend the number of available model organisms. For example, there are very few model organisms for diverse microbial eukaryotes, a group of organisms which indeed represents the vast majority of the eukaryotic diversity. To this end, we have developed a system to do genetic modification on the Atlantic salmon pathogen Spironucleus salmonicida. Using this system we could show that the organism is capable of producing hydrogen within specialised compartments. Here we present the genome sequence of S. salmonicida together with a thorough annotation. We compare the results with the closest available model organism, the human intestinal parasite Giardia intestinalis. The fish parasite has a more elaborate system for regulation of gene expression, as well as a larger metabolic capacity. This indicates that S. salmonicida is a well-adapted pathogen that can deal with fluctuating environments, an important trait to be able to establish systemic infections in the host. The development of S. salmonicida into a model system will benefit the studies of fish infections, as well as cell biological processes.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Elin Einarsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
9
|
Leonard G, Richards TA. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proc Natl Acad Sci U S A 2012; 109:21402-7. [PMID: 23236161 PMCID: PMC3535628 DOI: 10.1073/pnas.1210909110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the course of evolution genes undergo both fusion and fission by which ORFs are joined or separated. These processes can amend gene function and represent an important factor in the evolution of protein interaction networks. Gene fusions have been suggested to be useful characters for identifying evolutionary relationships because they constitute synapomorphies or cladistic characters. To investigate the fidelity of gene-fusion characters, we developed an approach for identifying differentially distributed gene fusions among whole-genome datasets: fdfBLAST. Applying this tool to the Fungi, we identified 63 gene fusions present in two or more genomes. Using a combination of phylogenetic and comparative genomic analyses, we then investigated the evolution of these genes across 115 fungal genomes, testing each gene fusion for evidence of homoplasy, including gene fission, convergence, and horizontal gene transfer. These analyses demonstrated 110 gene-fission events. We then identified a minimum of three mechanisms that drive gene fission: separation, degeneration, and duplication. These data suggest that gene fission plays an important and hitherto underestimated role in gene evolution. Gene fusions therefore are highly labile characters, and their use for polarizing evolutionary relationships, without reference to gene and species phylogenies, is limited. Accounting for these considerable sources of homoplasy, we identified fusion characters that provide support for multiple nodes in the phylogeny of the Fungi, including relationships within the deeply derived flagellum-forming fungi (i.e., the chytrids).
Collapse
Affiliation(s)
- Guy Leonard
- Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; and
| | - Thomas A. Richards
- Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; and
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
10
|
Stairs CW, Roger AJ, Hampl V. Eukaryotic Pyruvate Formate Lyase and Its Activating Enzyme Were Acquired Laterally from a Firmicute. Mol Biol Evol 2011; 28:2087-99. [DOI: 10.1093/molbev/msr032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Lundin D, Gribaldo S, Torrents E, Sjöberg BM, Poole AM. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evol Biol 2010; 10:383. [PMID: 21143941 PMCID: PMC3019208 DOI: 10.1186/1471-2148-10-383] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/10/2010] [Indexed: 11/29/2022] Open
Abstract
Background Ribonucleotide reduction is the only de novo pathway for synthesis of deoxyribonucleotides, the building blocks of DNA. The reaction is catalysed by ribonucleotide reductases (RNRs), an ancient enzyme family comprised of three classes. Each class has distinct operational constraints, and are broadly distributed across organisms from all three domains, though few class I RNRs have been identified in archaeal genomes, and classes II and III likewise appear rare across eukaryotes. In this study, we examine whether this distribution is best explained by presence of all three classes in the Last Universal Common Ancestor (LUCA), or by horizontal gene transfer (HGT) of RNR genes. We also examine to what extent environmental factors may have impacted the distribution of RNR classes. Results Our phylogenies show that the Last Eukaryotic Common Ancestor (LECA) possessed a class I RNR, but that the eukaryotic class I enzymes are not directly descended from class I RNRs in Archaea. Instead, our results indicate that archaeal class I RNR genes have been independently transferred from bacteria on two occasions. While LECA possessed a class I RNR, our trees indicate that this is ultimately bacterial in origin. We also find convincing evidence that eukaryotic class I RNR has been transferred to the Bacteroidetes, providing a stunning example of HGT from eukaryotes back to Bacteria. Based on our phylogenies and available genetic and genomic evidence, class II and III RNRs in eukaryotes also appear to have been transferred from Bacteria, with subsequent within-domain transfer between distantly-related eukaryotes. Under the three-domains hypothesis the RNR present in the last common ancestor of Archaea and eukaryotes appears, through a process of elimination, to have been a dimeric class II RNR, though limited sampling of eukaryotes precludes a firm conclusion as the data may be equally well accounted for by HGT. Conclusions Horizontal gene transfer has clearly played an important role in the evolution of the RNR repertoire of organisms from all three domains of life. Our results clearly show that class I RNRs have spread to Archaea and eukaryotes via transfers from the bacterial domain, indicating that class I likely evolved in the Bacteria. However, against the backdrop of ongoing transfers, it is harder to establish whether class II or III RNRs were present in the LUCA, despite the fact that ribonucleotide reduction is an essential cellular reaction and was pivotal to the transition from RNA to DNA genomes. Instead, a general pattern of ongoing horizontal transmission emerges wherein environmental and enzyme operational constraints, especially the presence or absence of oxygen, are likely to be major determinants of the RNR repertoire of genomes.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Dincturk HB, Cunin R, Akce H. Expression and functional analysis of glutamate synthase small subunit-like proteins from archaeon Pyrococcus horikoshii. Microbiol Res 2010; 166:294-303. [PMID: 20630732 DOI: 10.1016/j.micres.2010.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/07/2010] [Accepted: 03/18/2010] [Indexed: 11/30/2022]
Abstract
Glutamate synthase, glutamine α-ketoglutarate amidotransferase (often abbreviated as GOGAT) is a key enzyme in the early stages of ammonia assimilation in bacteria, algae and plants, catalyzing the reductive transamidation of the amido nitrogen from glutamine to α-ketoglutarate to form two molecules of glutamate. Most bacterial glutamate synthases consist of a large and small subunit. The genomes of three Pyrococcus species harbour several open reading frames which show homology with the small subunit of glutamate synthase. There are no open reading frames which may be coding for a large subunit responsible for the glutamate formation in these pyrococcal genomes. In this work, two open reading frames PH0876 and PH1873 from P. horikoshii were cloned and expressed in Escherichia coli as soluble proteins. Both proteins show NADPH-dependent oxidoreductase activity using artificial electron acceptors iodonitrotetrazolium chloride at thermophilic conditions. It is possible that these open reading frames are the products of gene duplication and that they are the early forms of an electron transfer domain in archaea which may have later contributed to many electron transfer enzymes.
Collapse
Affiliation(s)
- H Benan Dincturk
- Department of Molecular Biology and Genetics, Faculty of Sciences and Letters, Istanbul Technical University Maslak, 34469 Istanbul, Turkey.
| | | | | |
Collapse
|
13
|
Jeelani G, Husain A, Sato D, Ali V, Suematsu M, Soga T, Nozaki T. Two atypical L-cysteine-regulated NADPH-dependent oxidoreductases involved in redox maintenance, L-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica. J Biol Chem 2010; 285:26889-26899. [PMID: 20592025 DOI: 10.1074/jbc.m110.106310] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We discovered novel catalytic activities of two atypical NADPH-dependent oxidoreductases (EhNO1/2) from the enteric protozoan parasite Entamoeba histolytica. EhNO1/2 were previously annotated as the small subunit of glutamate synthase (glutamine:2-oxoglutarate amidotransferase) based on similarity to authentic bacterial homologs. As E. histolytica lacks the large subunit of glutamate synthase, EhNO1/2 were presumed to play an unknown role other than glutamine/glutamate conversion. Transcriptomic and quantitative reverse PCR analyses revealed that supplementation or deprivation of extracellular L-cysteine caused dramatic up- or down-regulation, respectively, of EhNO2, but not EhNO1 expression. Biochemical analysis showed that these FAD- and 2[4Fe-4S]-containing enzymes do not act as glutamate synthases, a conclusion which was supported by phylogenetic analyses. Rather, they catalyze the NADPH-dependent reduction of oxygen to hydrogen peroxide and L-cystine to L-cysteine and also function as ferric and ferredoxin-NADP(+) reductases. EhNO1/2 showed notable differences in substrate specificity and catalytic efficiency; EhNO1 had lower K(m) and higher k(cat)/K(m) values for ferric ion and ferredoxin than EhNO2, whereas EhNO2 preferred L-cystine as a substrate. In accordance with these properties, only EhNO1 was observed to physically interact with intrinsic ferredoxin. Interestingly, EhNO1/2 also reduced metronidazole, and E. histolytica transformants overexpressing either of these proteins were more sensitive to metronidazole, suggesting that EhNO1/2 are targets of this anti-amebic drug. To date, this is the first report to demonstrate that small subunit-like proteins of glutamate synthase could play an important role in redox maintenance, L-cysteine/L-cystine homeostasis, iron reduction, and the activation of metronidazole.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Center for Integrated Medical Research, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, India
| | - Makoto Suematsu
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
14
|
Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CC, Brettin T, Detter JC, Tapia R, Han C, Heimerl T, Weikl F, Brambilla E, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Thermosphaera aggregans type strain (M11TL). Stand Genomic Sci 2010; 2:245-59. [PMID: 21304709 PMCID: PMC3035292 DOI: 10.4056/sigs.821804] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TL(T) was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
15
|
Nedelcu AM, Blakney AJC, Logue KD. Functional replacement of a primary metabolic pathway via multiple independent eukaryote-to-eukaryote gene transfers and selective retention. J Evol Biol 2009; 22:1882-94. [PMID: 19619164 DOI: 10.1111/j.1420-9101.2009.01797.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although lateral gene transfer (LGT) is now recognized as a major force in the evolution of prokaryotes, the contribution of LGT to the evolution and diversification of eukaryotes is less understood. Notably, transfers of complete pathways are believed to be less likely between eukaryotes, because the successful transfer of a pathway requires the physical clustering of functionally related genes. Here, we report that in one of the closest unicellular relatives of animals, the choanoflagellate, Monosiga, three genes whose products work together in the glutamate synthase cycle are of algal origin. The concerted retention of these three independently acquired genes is best explained as the consequence of a series of adaptive replacement events. More generally, this study argues that (i) eukaryote-to-eukaryote transfers of entire metabolic pathways are possible, (ii) adaptive functional replacements of primary pathways can occur, and (iii) functional replacements involving eukaryotic genes are likely to have also contributed to the evolution of eukaryotes. Lastly, these data underscore the potential contribution of algal genes to the evolution of nonphotosynthetic lineages.
Collapse
Affiliation(s)
- A M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada.
| | | | | |
Collapse
|
16
|
Ximénez C, Morán P, Rojas L, Valadez A, Gómez A. Reassessment of the epidemiology of amebiasis: state of the art. INFECTION GENETICS AND EVOLUTION 2009; 9:1023-32. [PMID: 19540361 DOI: 10.1016/j.meegid.2009.06.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/25/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
The epidemiology of amebiasis has dramatically changed since the separation of Entamoeba histolytica and Entamoeba dispar species, and the worldwide prevalence of these species has not been estimated until recently. The most cited data regarding prevalence, morbidity, or mortality due to amebiasis is the 1986 Walsh report, in which 100,000 deaths are reported to occur worldwide each year due to medical complications of invasive amebiasis. However, the prevalence values of Entamoeba histolytica infection could be completely erroneous since the estimations were performed prior to the molecular characterization of E. histolytica and E. dispar species. Moreover, Entamoeba moshkovskii, another morphologically indistinguishable human parasitic Entamoeba, was not mentioned or considered as a contributor to the prevalence figures in endemic areas. However, recent available prevalence and morbidity data obtained through molecular techniques allow the construction of a more reliable map of endemic regions of amebiasis all over the world [the Asian subcontinent (India, Bangladesh), Africa, Asian Pacific Countries (Thailand, Japan), South and Central America (Mexico, Colombia)]. The epidemiology of infectious diseases focuses on identification of factors that determine disease distribution in time and space, transmission factors responsible for the disease, clinical manifestations, and progression in the host, with the goal being the design of realistic intervention and prevention strategies in a reasonable period of time. In the present review, we will describe how molecular tools have made actual knowledge regarding the epidemiology of amebiasis possible. We will also analyze the most relevant available data on prevalence, morbidity, geographic distribution, patterns of transmission, exposure, and risk factors for infection in the human host. Our intention is to emphasize the recent molecular typing methods applied in genotyping Entamoeba species and strains, and to assess their value and limitations. Finally, we will discuss those areas of the host-parasite relationship that are still not fully understood, and the scientific challenges to approach this important public health problem in the future.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, Mexico.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Gloux K, Leclerc M, Iliozer H, L'Haridon R, Manichanh C, Corthier G, Nalin R, Blottière HM, Doré J. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 2007; 73:3734-7. [PMID: 17400773 PMCID: PMC1932692 DOI: 10.1128/aem.02204-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.
Collapse
Affiliation(s)
- Karine Gloux
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Makiuchi T, Nara T, Annoura T, Hashimoto T, Aoki T. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups. Gene 2007; 394:78-86. [PMID: 17383832 DOI: 10.1016/j.gene.2007.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 02/06/2023]
Abstract
The genes encoding orotate phosphoribosyltransferase (OPRT) and orotidine-5'-monophosphate decarboxylase (OMPDC), the fifth and sixth enzymes in the de novo pyrimidine biosynthetic pathway, are fused as OPRT-OMPDC in most eukaryotic groups. On the other hand, the inversely linked OMPDC-OPRT fusion is present in trypanosomatids, belonging to kinetoplastids together with bodonids in a supergroup, Euglenozoa. Here, we show the presence of OMPDC-OPRT in the bodonid, Bodo caudatus, while OPRT-OMPDC in Euglena gracilis, another euglenozoan species belonging to euglenoids. These results suggest that the OMPDC-OPRT fusion event occurred in a common ancestor of kinetoplastids. Genome sequence database searches further revealed the presence of OMPDC-OPRT in stramenopiles and cyanobacteria. Phylogenetic reconstruction of OPRT and OMPDC rejected statistically the monophyly of the OPRT domains of stramenopile and kinetoplastid OMPDC-OPRT, demonstrating that these gene fusions do not share a common evolutionary origin, despite the identical gene order. Thus, the OMPDC-OPRT fusion is likely to have emerged independently in these eukaryotic groups. Phylogenetic analyses also suggested that cyanobacterial OMPDC-OPRT arose via lateral transfer. We conclude that gene fusion events occur more frequently than previously thought and that lateral gene transfer has made a marked contribution to establishment of the rearranged structure of OPRT and OMPDC genes in eukaryotes.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
20
|
Watkins RF, Gray MW. The frequency of eubacterium-to-eukaryote lateral gene transfers shows significant cross-taxa variation within amoebozoa. J Mol Evol 2006; 63:801-14. [PMID: 17086451 DOI: 10.1007/s00239-006-0031-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Single-celled bacterivorous eukaryotes offer excellent test cases for evaluation of the frequency of prey-to-predator lateral gene transfer (LGT). Here we use analysis of expressed sequence tag (EST) data sets to quantify the extent of LGT from eubacteria to two amoebae, Acanthamoeba castellanii and Hartmannella vermiformis. Stringent screening for LGT proceeded in several steps intended to enrich for authentic events while at the same time minimizing the incidence of false positives due to factors such as limitations in database coverage and ancient paralogy. The results were compared with data obtained when the same methodology was applied to EST libraries from a number of other eukaryotic taxa. Significant differences in the extent of apparent eubacterium-to-eukaryote LGT were found between taxa. Our results indicate that there may be substantial inter-taxon variation in the number of LGT events that become fixed even between amoebozoan species that have similar feeding modalities.
Collapse
Affiliation(s)
- Russell F Watkins
- Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| | | |
Collapse
|
21
|
Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 2006; 281:17189-17196. [PMID: 16617180 DOI: 10.1074/jbc.m601754200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria. The fact that homologous men genes reside as polycistronic units in eubacterial chromosomes and in plastomes of red algae strongly suggests that PHYLLO derived from a plastid operon during endosymbiosis. The principle architecture of the fused PHYLLO locus is conserved in the nuclear genomes of plants, green algae, and the diatom alga Thalassiosira pseudonana. The latter arose from secondary endosymbiosis of a red algae and a eukaryotic host indicating selective driving forces for maintenance and/or independent generation of the composite gene cluster within the nuclear genomes. Besides, individual menF genes, encoding active isochorismate synthases (ICS), have been established followed by splitting of the essential 3' region of the menF module of PHYLLO only in genomes of higher plants. This resulted in inactivation of the ICS activity encoded by PHYLLO and enabled a metabolic branch from the phylloquinone biosynthetic route to independently regulate the synthesis of salicylic acid required for plant defense. Therefore, gene fusion, duplication, and fission events adapted a eubacterial multienzymatic system to the metabolic requirements of plants.
Collapse
Affiliation(s)
- Jeferson Gross
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Won Kyong Cho
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Lina Lezhneva
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Jon Falk
- Institute of Botany, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Kazuo Shinozaki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Reinhold G Herrmann
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Jörg Meurer
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany.
| |
Collapse
|
22
|
Andersson JO, Hirt RP, Foster PG, Roger AJ. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol Biol 2006; 6:27. [PMID: 16551352 PMCID: PMC1484493 DOI: 10.1186/1471-2148-6-27] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 03/21/2006] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Lateral gene transfer (LGT) in eukaryotes from non-organellar sources is a controversial subject in need of further study. Here we present gene distribution and phylogenetic analyses of the genes encoding the hybrid-cluster protein, A-type flavoprotein, glucosamine-6-phosphate isomerase, and alcohol dehydrogenase E. These four genes have a limited distribution among sequenced prokaryotic and eukaryotic genomes and were previously implicated in gene transfer events affecting eukaryotes. If our previous contention that these genes were introduced by LGT independently into the diplomonad and Entamoeba lineages were true, we expect that the number of putative transfers and the phylogenetic signal supporting LGT should be stable or increase, rather than decrease, when novel eukaryotic and prokaryotic homologs are added to the analyses. RESULTS The addition of homologs from phagotrophic protists, including several Entamoeba species, the pelobiont Mastigamoeba balamuthi, and the parabasalid Trichomonas vaginalis, and a large quantity of sequences from genome projects resulted in an apparent increase in the number of putative transfer events affecting all three domains of life. Some of the eukaryotic transfers affect a wide range of protists, such as three divergent lineages of Amoebozoa, represented by Entamoeba, Mastigamoeba, and Dictyostelium, while other transfers only affect a limited diversity, for example only the Entamoeba lineage. These observations are consistent with a model where these genes have been introduced into protist genomes independently from various sources over a long evolutionary time. CONCLUSION Phylogenetic analyses of the updated datasets using more sophisticated phylogenetic methods, in combination with the gene distribution analyses, strengthened, rather than weakened, the support for LGT as an important mechanism affecting the evolution of these gene families. Thus, gene transfer seems to be an on-going evolutionary mechanism by which genes are spread between unrelated lineages of all three domains of life, further indicating the importance of LGT from non-organellar sources into eukaryotic genomes.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden
| | - Robert P Hirt
- School of Biology, The Devonshire Building, The University of Newcastle upon Tyne, NE1 7RU, UK
| | - Peter G Foster
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
23
|
Okada A, Imase A, Matsuda H, Ohmae H, Hata H, Iwamura Y. Heterogeneity of class I and class II MHC sequences in Schistosoma mansoni. Parasitol Res 2006; 99:21-7. [PMID: 16470417 DOI: 10.1007/s00436-005-0035-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 09/26/2005] [Indexed: 11/30/2022]
Abstract
We investigated the genetic variations in class I and class II major histocompatibility complex (MHC) genes of Schistosoma mansoni and the effects of host MHC genotypes. S. mansoni was maintained in combinations of two mouse strains with different MHC genotypes, and the MHC gene sequences of the cercariae were investigated. The detected class I MHC gene sequences were variable, with high similarity between the H-2D(b) murine host and the parasite. For other combinations, however, the parasite sequence was homologous to those of anthropoids. All class II MHC sequences detected in S. mansoni were homologous to those of anthropoids. Our results suggest that the genetic variation in the MHC sequences of S. mansoni is derived in part from the current host, indicating horizontal transfer of the sequences from mammal to parasite.
Collapse
Affiliation(s)
- Ayumi Okada
- Center for Arts and Humanities, Ibaraki Prefectural University of Health Sciences, Ami 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 2005; 187:1392-404. [PMID: 15687204 PMCID: PMC545617 DOI: 10.1128/jb.187.4.1392-1404.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180(T)). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble alpha(2)beta(2)gamma(2)-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.
Collapse
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vanoni MA, Curti B. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. Arch Biochem Biophys 2005; 433:193-211. [PMID: 15581577 DOI: 10.1016/j.abb.2004.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 08/31/2004] [Indexed: 11/24/2022]
Abstract
Glutamate synthase (GltS) is, with glutamine synthetase, the key enzyme of ammonia assimilation in bacteria, microorganisms and plants. GltS isoforms result from the assembly and co-evolution of conserved functional domains. They share a common mechanism of reductive glutamine-dependent glutamate synthesis from 2-oxoglutarate, which takes place within the alpha subunit ( approximately 150 kDa) of the NADPH-dependent bacterial enzyme and the corresponding polypeptides of other GltS forms, and involves: (i) an Ntn-type amidotransferase domain and (ii) a flavin mononucleotide-containing (beta/alpha)(8) barrel synthase domain connected by (iii) a approximately 30 A-long intramolecular ammonia tunnel. The synthase domain harbors the [3Fe/4S](0,+1) cluster of the enzyme, which participates in the electron transfer process from the physiological reductant: reduced ferredoxin in the plant-type enzyme or NAD(P)H in the bacterial and the non-photosynthetic eukaryotic form. The NAD(P)H-dependent GltS requires a tightly bound flavin adenine dinucleotide-dependent reductase (beta subunit, approximately 50 kDa), also determining the presence of two low-potential [4Fe-4S](+1,+2) clusters. Structural, functional and computational data available on GltS and related enzymes show how the enzyme may control and coordinate the reactions taking place at the glutaminase and synthase sites by sensing substrate binding and cofactor redox state.
Collapse
Affiliation(s)
- Maria A Vanoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20131 Milan, Italy.
| | | |
Collapse
|
26
|
Sinkins SP, Godfray HCJ. Use of Wolbachia to drive nuclear transgenes through insect populations. Proc Biol Sci 2004; 271:1421-6. [PMID: 15306342 PMCID: PMC1691734 DOI: 10.1098/rspb.2004.2740] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wolbachia is an inherited intracellular bacterium found in many insects of medical and economic importance. The ability of many strains to spread through populations using cytoplasmic incompatibility, involving sperm modification and rescue, provides a powerful mechanism for driving beneficial transgenes through insect populations, if such transgenes could be inserted into and expressed by Wolbachia. However, manipulating Wolbachia in this way has not yet been achieved. Here, we demonstrate theoretically an alternative mechanism whereby nuclear rather than cytoplasmic transgenes could be driven through populations, by linkage to a nuclear gene able to rescue modified sperm. The spread of a 'nuclear rescue construct' occurs as long as the Wolbachia show imperfect maternal transmission under natural conditions and/or imperfect rescue of modified sperm. The mechanism is most efficient when the target population is already infected with Wolbachia at high frequency, whether naturally or by the sequential release of Wolbachia-infected individuals and subsequently the nuclear rescue construct. The results provide a potentially powerful addition to the few insect transgene drive mechanisms that are available.
Collapse
Affiliation(s)
- Steven P Sinkins
- Vector Research Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | |
Collapse
|
27
|
van der Giezen M, Cox S, Tovar J. The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 2004; 4:7. [PMID: 15040816 PMCID: PMC373444 DOI: 10.1186/1471-2148-4-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/20/2004] [Indexed: 11/10/2022] Open
Abstract
Background Iron-sulfur (FeS) proteins are present in all living organisms and play important roles in electron transport and metalloenzyme catalysis. The maturation of FeS proteins in eukaryotes is an essential function of mitochondria, but little is known about this process in amitochondriate eukaryotes. Here we report on the identification and analysis of two genes encoding critical FeS cluster (Isc) biosynthetic proteins from the amitochondriate human pathogen Entamoeba histolytica. Results E. histolytica IscU and IscS were found to contain all features considered essential for their biological activity, including amino acid residues involved in substrate and/or co-factor binding. The IscU protein differs significantly from other eukaryotic homologs and resembles the long type isoforms encountered in some bacteria. Phylogenetic analyses of E. histolytica IscS and IscU showed a close relationship with homologs from Helicobacter pylori and Campylobacter jejuni, to the exclusion of mitochondrial isoforms. Conclusions The bacterial-type FeS cluster assembly genes of E. histolytica suggest their lateral acquisition from epsilon proteobacteria. This is a clear example of horizontal gene transfer (HGT) from eubacteria to unicellular eukaryotic organisms, a phenomenon known to contribute significantly to the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Siân Cox
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
28
|
Campbell SA, Richards TA, Mui EJ, Samuel BU, Coggins JR, McLeod R, Roberts CW. A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. Int J Parasitol 2004; 34:5-13. [PMID: 14711585 DOI: 10.1016/j.ijpara.2003.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The shikimate pathway is essential for survival of the apicomplexan parasites Plasmodium falciparum, Toxoplasma gondii and Cryptosporidium parvum. As it is absent in mammals it is a promising therapeutic target. Herein, we describe the genes encoding the shikimate pathway enzymes in T. gondii. The molecular arrangement and phylogeny of the proteins suggests homology with the eukaryotic fungal enzymes, including a pentafunctional AROM. Current rooting of the eukaryotic evolutionary tree infers that the fungi and apicomplexan lineages diverged deeply, suggesting that the arom is an ancient supergene present in early eukaryotes and subsequently lost or replaced in a number of lineages.
Collapse
Affiliation(s)
- S A Campbell
- Department of Immunology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, Scotland G4 ONR, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Stutz HE, Reid SJ. GltX from Clostridium saccharobutylicum NCP262: glutamate synthase or oxidoreductase? ACTA ACUST UNITED AC 2004; 1676:71-82. [PMID: 14732492 DOI: 10.1016/j.bbaexp.2003.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A full-length gene encoding a homologue of the small subunit of the glutamate synthase (GOGAT) enzyme was isolated from the anaerobic bacterium, Clostridium saccharobutylicum NCP262, which has been used extensively for the commercial production of solvents. Using a screening system designed to isolate genes involved in electron transport, plasmid pMET13C1 was isolated. Analysis of this plasmid identified a gene (1245 bp) with a predicted approximately 46-kDa product, which was associated with reductive activation of the pro-drug metronidazole. The deduced 414-amino-acid sequence was not typical of electron transport proteins, but rather shared striking homology to the small (beta) subunit of the GOGAT enzyme and other beta subunit-like polypeptides, and was thus designated gltX. Although all the functional domains typical of GOGAT beta subunits were conserved in this GltX protein, certain sequence features were not conserved. Furthermore, it was independently transcribed, did not lie adjacent to a GOGAT large subunit (alpha) domain, and its expression was not regulated by nitrogen conditions. These results provide additional support for current theories on the evolutionary relationships of GOGAT beta subunit domains in bacteria, and suggest that GltX belongs to a more general family of oxidoreductases, which is used in a context other than glutamate biosynthesis to transfer electrons to a currently unknown protein domain.
Collapse
Affiliation(s)
- Helen E Stutz
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch 7701, South Africa
| | | |
Collapse
|
30
|
Abstract
The apparati behind the replication, transcription, and translation of prokaryotic and eukaryotic genes are quite different. Yet in both classes of organisms, genes may be organized in their respective chromosomes in similar ways by virtue of similarly acting selective forces. In addition, some gene organizations reflect biology unique to each class of organisms. Levels of organization are more complex than those of the simple operon. Multiple transcription units may be organized into larger units, local control regions may act over large chromosomal regions in eukaryotic chromosomes, and cis-acting genes may control the expression of downstream genes in all classes of organisms. All these mechanisms lead to genomes being far more organized, in both prokaryotes and eukaryotes, than hitherto imagined.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
31
|
Archibald JM, Rogers MB, Toop M, Ishida KI, Keeling PJ. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 2003; 100:7678-83. [PMID: 12777624 PMCID: PMC164647 DOI: 10.1073/pnas.1230951100] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 04/18/2003] [Indexed: 02/01/2023] Open
Abstract
Chlorarachniophytes are amoeboflagellate algae that acquired photosynthesis secondarily by engulfing a green alga and retaining its plastid (chloroplast). An important consequence of secondary endosymbiosis in chlorarachniophytes is that most of the nuclear genes encoding plastid-targeted proteins have moved from the nucleus of the endosymbiont to the host nucleus. We have sequenced and analyzed 83 cDNAs encoding 78 plastid-targeted proteins from the model chlorarachniophyte Bigelowiella natans (formerly Chlorarachnion sp. CCMP621). Phylogenies inferred from the majority of these genes are consistent with a chlorophyte green algal origin. However, a significant number of genes ( approximately 21%) show signs of having been acquired by lateral gene transfer from numerous other sources: streptophyte algae, red algae (or algae with red algal endosymbionts), as well as bacteria. The chlorarachniophyte plastid proteome may therefore be regarded as a mosaic derived from various organisms in addition to the ancestral chlorophyte plastid. In contrast, the homologous genes from the chlorophyte Chlamydomonas reinhardtii do not show any indications of lateral gene transfer. This difference is likely a reflection of the mixotrophic nature of Bigelowiella (i.e., it is photosynthetic and phagotrophic), whereas Chlamydomonas is strictly autotrophic. These results underscore the importance of lateral gene transfer in contributing foreign proteins to eukaryotic cells and their organelles, and also suggest that its impact can vary from lineage to lineage.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
32
|
Andersson JO, Roger AJ. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC Evol Biol 2003; 3:14. [PMID: 12820901 PMCID: PMC166173 DOI: 10.1186/1471-2148-3-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 06/23/2003] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH), to evaluate and compare the patterns and rates of lateral gene transfer (LGT) in prokaryotes and eukaryotes. RESULTS We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists). CONCLUSION LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.
Collapse
Affiliation(s)
- Jan O Andersson
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
- Current address: Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|
33
|
Richards TA, Hirt RP, Williams BAP, Embley TM. Horizontal gene transfer and the evolution of parasitic protozoa. Protist 2003; 154:17-32. [PMID: 12812367 DOI: 10.1078/143446103764928468] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Doolittle WF, Boucher Y, Nesbø CL, Douady CJ, Andersson JO, Roger AJ. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 2003; 358:39-57; discussion 57-8. [PMID: 12594917 PMCID: PMC1693099 DOI: 10.1098/rstb.2002.1185] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As more and more complete bacterial and archaeal genome sequences become available, the role of lateral gene transfer (LGT) in shaping them becomes more and more clear. Over the long term, it may be the dominant force, affecting most genes in most prokaryotes. We review the history of LGT, suggesting reasons why its prevalence and impact were so long dismissed. We discuss various methods purporting to measure the extent of LGT, and evidence for and against the notion that there is a core of never-exchanged genes shared by all genomes, from which we can deduce the "true" organismal tree. We also consider evidence for, and implications of, LGT between prokaryotes and phagocytic eukaryotes.
Collapse
Affiliation(s)
- W F Doolittle
- Genome Atlantic, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Andersson JO, Sjögren AM, Davis LAM, Embley TM, Roger AJ. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 2003; 13:94-104. [PMID: 12546782 DOI: 10.1016/s0960-9822(03)00003-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists. RESULTS Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups. CONCLUSIONS Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.
Collapse
Affiliation(s)
- Jan O Andersson
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry, Dalhousie University, B3H 4H7, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|