1
|
Morimoto YV. Ion Signaling in Cell Motility and Development in Dictyostelium discoideum. Biomolecules 2024; 14:830. [PMID: 39062545 PMCID: PMC11274586 DOI: 10.3390/biom14070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.
Collapse
Affiliation(s)
- Yusuke V. Morimoto
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan;
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
2
|
Mathavarajah S, McLaren MD, Huber RJ. Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3559-3573. [PMID: 30251676 DOI: 10.1016/j.bbadis.2018.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3- cells displayed defects in cytokinesis. The recovery of cln3- cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3- cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3- cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.
Collapse
Affiliation(s)
| | - Meagan D McLaren
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
3
|
Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response. Protist 2018; 169:584-602. [DOI: 10.1016/j.protis.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
|
4
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
5
|
The calcineurin dependent transcription factor TacA is involved in development and the stress response of Dictyostelium discoideum. Eur J Cell Biol 2012; 91:789-99. [DOI: 10.1016/j.ejcb.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022] Open
|
6
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. Conclusions The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lannoo N, Van Damme EJM. Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 2009; 1800:190-201. [PMID: 19647040 DOI: 10.1016/j.bbagen.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the 'classical' plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein-carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | |
Collapse
|
8
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
9
|
Boeckeler K, Tischendorf G, Mutzel R, Weissenmayer B. Aberrant stalk development and breakdown of tip dominance in Dictyostelium cell lines with RNAi-silenced expression of calcineurin B. BMC DEVELOPMENTAL BIOLOGY 2006; 6:12. [PMID: 16512895 PMCID: PMC1431509 DOI: 10.1186/1471-213x-6-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/02/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, plays important roles in various cellular processes in lower and higher eukaryotes. Here we analyze the role of calcineurin in the development of Dictyostelium discoideum by RNAi-mediated manipulation of its expression. RESULTS The cnbA gene of Dictyostelium discoideum which encodes the regulatory B subunit (CNB) of calcineurin was silenced by RNAi. We found a variety of silencing levels of CNB in different recombinant cell lines. Reduction of CNB expression in a given cell line was correlated with developmental aberrations. Cell lines with strongly reduced protein levels developed slower than wild type cells and formed short stalks and spore heads with additional tips. Formation of short stalks results from incomplete vacuolization of prestalk cells during terminal differentiation. Expression of the stalk-specific gene ecmB was reduced in mutant cells. Aberrant stalk development is a cell autonomous defect, whereas the breakdown of tip dominance can be prevented by the presence of as low as 10% wild type cells in chimeras. CONCLUSION Silencing of calcineurin B in Dictyostelium by expression of RNAi reveals an unexpected link between increased intracellular calcium levels, possibly triggered by the morphogen DIF, activation of calcineurin, and the terminal stage of morphogenesis.
Collapse
Affiliation(s)
- Katrina Boeckeler
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
- University College London, Department of Biology, Gower Street, London, Wc1 E6BT, UK
| | - Gilbert Tischendorf
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Rupert Mutzel
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Barbara Weissenmayer
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| |
Collapse
|
10
|
Weissenmayer B, Boeckeler K, Lahrz A, Mutzel R. The calcineurin inhibitor gossypol impairs growth, cell signalling and development in Dictyostelium discoideum. FEMS Microbiol Lett 2005; 242:19-25. [PMID: 15621416 DOI: 10.1016/j.femsle.2004.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/22/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022] Open
Abstract
The Dictyostelium genome harbors single copy genes for both the catalytic and regulatory subunits of the Ca2+/calmodulin-dependent protein phosphatase calcineurin. Since molecular genetic approaches to reduce the expression of these genes have failed so far, we attempted to pharmacologically target calcineurin activity in vivo by using the recently described calcineurin inhibitor, gossypol. Up-regulation of expression of the gene for the Ca2+-ATPase PAT1 in conditions of Ca2+ stress was reduced by gossypol. Dictyostelium wild-type cells treated with 12.5-100 microM gossypol showed reduced growth rates and impaired development. In addition, cell signalling was affected. A cell line that overproduces the catalytic subunit of calcineurin was more resistant to gossypol.
Collapse
Affiliation(s)
- Barbara Weissenmayer
- Institut für Biologie - Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
Coukell B, Cameron A, Perusini S, Shim K. Disruption of the NCS-1/frequenin-related ncsA gene in Dictyostelium discoideum accelerates development. Dev Growth Differ 2005; 46:449-58. [PMID: 15606490 DOI: 10.1111/j.1440-169x.2004.00761.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To learn more about the function of intracellular Ca2+ in Dictyostelium discoideum, we searched databases for sequences encoding potential members of the neuronal calcium sensor (NCS) family of Ca2+-binding proteins. As a result, genes for five new putative Ca2+-binding proteins were identified. Based on amino acid sequence alignments and phylogenetic analyses, one of these genes (ncsA) was determined to be closely related to NCS-1/frequenin genes in other organisms. The protein product of ncsA (NcsA) binds 45Ca2+ and exhibits a dramatic gel mobility shift in the presence of Ca2+, suggesting that it is a Ca2+ sensor. ncsA-null cells grow normally in axenic culture. However, on bacterial lawns, the ncsA-null clones expand slowly and development begins prematurely within the plaques. In larger clones, ncsA-null cells form narrow growth zones with evenly spaced aggregates along the inner edge, and closely packed fruiting bodies. An analysis of intracellular cyclic adenosine monophosphate (cAMP) levels, developmental timing on phosphate-buffered saline (PBS) agar, and stage-specific gene expression indicate that development of ncsA-null cells is accelerated by 3-4 h. Together, these results suggest that NcsA might function in Dictyostelium to prevent cells from entering development prematurely in the presence of environmental nutrients.
Collapse
Affiliation(s)
- Barrie Coukell
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | | | | | | |
Collapse
|