1
|
Lin YH, Xu MY, Hsu CC, Damei FA, Lee HC, Tsai WL, Hoang CV, Chiang YR, Ma LS. Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nat Commun 2023; 14:5755. [PMID: 37716995 PMCID: PMC10505147 DOI: 10.1038/s41467-023-41459-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
The diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La's conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.
Collapse
Affiliation(s)
- Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Cuong V Hoang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
2
|
Li L, Zhu XM, Zhang YR, Cai YY, Wang JY, Liu MY, Wang JY, Bao JD, Lin FC. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Int J Mol Sci 2022; 23:ijms23094658. [PMID: 35563048 PMCID: PMC9104627 DOI: 10.3390/ijms23094658] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi–plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
- Correspondence: ; Tel.: +86-571-88404007
| |
Collapse
|
3
|
Lu S, Guo F, Wang Z, Shen X, Deng Y, Meng J, Jiang Z, Chen B. Genetic Dissection of T-DNA Insertional Mutants Reveals Uncoupling of Dikaryotic Filamentation and Virulence in Sugarcane Smut Fungus. PHYTOPATHOLOGY 2021; 111:2303-2308. [PMID: 33978448 DOI: 10.1094/phyto-03-21-0114-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The biotrophic basidiomycetous fungus Sporisorium scitamineum causing smut disease in sugarcane is characterized by a life cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are unclear. This study has focused on the characterization and genetic dissection of haploid filamentous mutants derived from T-DNA insertional mutagenesis. Our results support the existence of at least three genotypes among the six haploid filamentous mutants that differentially contribute to virulence and development of the whip and teliospore, providing a novel foundation for further investigation of the regulatory networks associated with pathogenicity and teliospore development in S. scitamineum.
Collapse
Affiliation(s)
- Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Feng Guo
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Xiaorui Shen
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004 China
- Ministry & Province co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Nanning, 530004 China
| |
Collapse
|
4
|
Tang J, Wu M, Zhang J, Li G, Yang L. Botrytis cinerea G Protein β Subunit Bcgb1 Controls Growth, Development and Virulence by Regulating cAMP Signaling and MAPK Signaling. J Fungi (Basel) 2021; 7:jof7060431. [PMID: 34072395 PMCID: PMC8228952 DOI: 10.3390/jof7060431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/05/2023] Open
Abstract
Botrytis cinerea is a necrotrophic phytopathogenic fungus that causes gray mold disease in many crops. To better understand the role of G protein signaling in the development and virulence of this fungus, the G protein β subunit gene Bcgb1 was knocked out in this study. The ΔBcgb1 mutants showed reduced mycelial growth rate, but increased aerial hyphae and mycelial biomass, lack of conidiation, failed to form sclerotia, increased resistance to cell wall and oxidative stresses, delayed formation of infection cushions, and decreased virulence. Deletion of Bcgb1 resulted in a significant reduction in the expression of several genes involved in cAMP signaling, and caused a notable increase in intracellular cAMP levels, suggesting that G protein β subunit Bcgb1 plays an important role in cAMP signaling. Furthermore, phosphorylation levels of MAP kinases (Bmp1 and Bmp3) were increased in the ΔBcgb1 mutants. Yeast two-hybrid assays showed that Bcgb1 interacts with MAPK (Bmp1 and Bmp3) cascade proteins (BcSte11, BcBck1, BcMkk1, and BcSte50), and the Bmp1-regulated gene Bcgas2 was up-regulated in the ΔBcgb1 mutant. These results indicated that Gβ protein Bcgb1 is involved in the MAPK signaling pathway in B. cinerea. In summary, our results revealed that Gβ protein Bcgb1 controls development and virulence through both the cAMP and MAPK (Bmp1 and Bmp3) signaling pathways in B. cinerea.
Collapse
|
5
|
Kijpornyongpan T, Aime MC. Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel) 2020; 6:jof6040368. [PMID: 33339287 PMCID: PMC7766764 DOI: 10.3390/jof6040368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.
Collapse
|
6
|
Valle-Maldonado MI, Patiño-Medina JA, Pérez-Arques C, Reyes-Mares NY, Jácome-Galarza IE, Ortíz-Alvarado R, Vellanki S, Ramírez-Díaz MI, Lee SC, Garre V, Meza-Carmen V. The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell Microbiol 2020; 22:e13236. [PMID: 32562333 DOI: 10.1111/cmi.13236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.
Collapse
Affiliation(s)
- Marco Iván Valle-Maldonado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Nancy Yadira Reyes-Mares
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | | | - Rafael Ortíz-Alvarado
- Facultad de Quimico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
7
|
Moretti M, Wang L, Grognet P, Lanver D, Link H, Kahmann R. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungusUstilago maydis. Mol Microbiol 2017; 105:901-921. [DOI: 10.1111/mmi.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marino Moretti
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Lei Wang
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Pierre Grognet
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Daniel Lanver
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| | - Hannes Link
- Dynamic Control of Metabolic Networks; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 16, Marburg D-35043 Germany
| | - Regine Kahmann
- Department of Organismic Interactions; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10, Marburg D-35043 Germany
| |
Collapse
|
8
|
Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li W, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldón T, Grigoriev IV. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Curr Biol 2016; 26:1577-1584. [PMID: 27238284 DOI: 10.1016/j.cub.2016.04.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 04/13/2016] [Indexed: 02/03/2023]
Abstract
Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.
Collapse
Affiliation(s)
- Luis M Corrochano
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain.
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Silvia Polaino
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - M Isabel Álvarez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Avalos
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ernesto P Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Río Duero 12, 37185 Salamanca, Spain
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Gertraud Burger
- Universite de Montreal, Pavillon Roger-Gaudry, Biochimie, CP 6128, Succursale Centre-Ville, Montreal QC, H3C 3J7, Canada
| | - Lola P Camino
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - David Cánovas
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Enrique Cerdá-Olmedo
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Angel Domínguez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Fabian Glaser
- Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Gabriel Gutiérrez
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Enrique A Iturriaga
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - B Franz Lang
- Universite de Montreal, Pavillon Roger-Gaudry, Biochimie, CP 6128, Succursale Centre-Ville, Montreal QC, H3C 3J7, Canada
| | - José L Lavín
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Sergio López-García
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Eva M Luque
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Ana T Marcos
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Joel Martin
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Kevin McCluskey
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - Humberto R Medina
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | | | - Atsushi Miyazaki
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Ishinomaki 986-8580, Japan
| | - Elisa Muñoz-Torres
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Avenida Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José A Oguiza
- Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | - Robin A Ohm
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - María Olmedo
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Margarita Orejas
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avenida Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antonio G Pisabarro
- Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | - Julio Rodríguez-Romero
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Rosa Ruiz-Vázquez
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Catalina Sanz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Wendy Schackwitz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Mahdi Shahriari
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Ekaterina Shelest
- Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Fátima Silva-Franco
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Darren Soanes
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267-0056, USA
| | - Víctor G Tagua
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012 Seville, Spain
| | - Nicholas J Talbot
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Michael R Thon
- Departamento de Microbiología y Genética, Universidad de Salamanca, Plaza de los doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Río Duero 12, 37185 Salamanca, Spain
| | - Hope Tice
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Ronald P de Vries
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ad Wiebenga
- CBS-KNAW Fungal Biodiversity Centre and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jagjit S Yadav
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267-0056, USA
| | - Edward L Braun
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Scott E Baker
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30071 Murcia, Spain
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Alexander Idnurm
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados, Kilómetro 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
9
|
Choi J, Jung WH, Kronstad JW. The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: Connections with iron homeostasis. J Microbiol 2015; 53:579-87. [PMID: 26231374 DOI: 10.1007/s12275-015-5247-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022]
Abstract
A number of pathogenic species of basidiomycete fungi are either life-threatening pathogens of humans or major economic pests for crop production. Sensing the host is a key aspect of pathogen proliferation during disease, and signal transduction pathways are critically important for detecting environmental conditions and facilitating adaptation. This review focuses on the contributions of the cAMP/protein kinase A (PKA) signaling pathway in Cryptococcus neoformans, a species that causes meningitis in humans, and Ustilago maydis, a model phytopathogen that causes a smut disease on maize. Environmental sensing by the cAMP/PKA pathway regulates the production of key virulence traits in C. neoformans including the polysaccharide capsule and melanin. For U. maydis, the pathway controls the dimorphic transition from budding growth to the filamentous cell type required for proliferation in plant tissue. We discuss recent advances in identifying new components of the cAMP/PKA pathway in these pathogens and highlight an emerging theme that pathway signaling influences iron acquisition.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, and Culture Collection and DNA Bank of Mushrooms, Incheon National University, Incheon, 406-772, Republic of Korea
| | | | | |
Collapse
|
10
|
Talhinhas P, Azinheira HG, Vieira B, Loureiro A, Tavares S, Batista D, Morin E, Petitot AS, Paulo OS, Poulain J, Da Silva C, Duplessis S, Silva MDC, Fernandez D. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. FRONTIERS IN PLANT SCIENCE 2014; 5:88. [PMID: 24672531 PMCID: PMC3953675 DOI: 10.3389/fpls.2014.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 05/06/2023]
Abstract
Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.
Collapse
Affiliation(s)
- Pedro Talhinhas
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Helena G. Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Bruno Vieira
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Andreia Loureiro
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Sílvia Tavares
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Anne-Sophie Petitot
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
| | - Julie Poulain
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Corinne Da Silva
- Genoscope, Centre National de Séquençage, Commissariat à l'Energie Atomique, Institut de GénomiqueEvry, France
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismesChampenoux, France
- Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Micro-organismes, Faculté des Sciences et TechnologiesVandoeuvre-lès-Nancy, France
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro/BioTrop/Instituto de Investigação Científica TropicalOeiras, Portugal
| | - Diana Fernandez
- Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux BioagresseursMontpellier, France
| |
Collapse
|
11
|
Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. J Microbiol 2014; 52:35-43. [DOI: 10.1007/s12275-014-3072-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
|
12
|
Ramanujam R, Calvert ME, Selvaraj P, Naqvi NI. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae. PLoS Pathog 2013; 9:e1003527. [PMID: 23935502 PMCID: PMC3731250 DOI: 10.1371/journal.ppat.1003527] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.
Collapse
Affiliation(s)
- Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Meredith E. Calvert
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Chacko N, Gold S. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response. Fungal Genet Biol 2012; 49:426-32. [DOI: 10.1016/j.fgb.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 02/04/2023]
|
14
|
Jeraj N, Stilla A, Petrič S, Di Girolamo M, Crešnar B, Lenasi H. Identification and partial characterization of Rhizopus nigricans Gβ proteins and their expression in the presence of progesterone. J Steroid Biochem Mol Biol 2012; 129:99-105. [PMID: 21195176 DOI: 10.1016/j.jsbmb.2010.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 12/18/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
The mammalian steroid hormone progesterone actuates a signalling pathway in the zygomycete Rhizopus nigricans which includes heterotrimeric G proteins. To investigate the possibility that the Gβ subunit of these proteins is involved in the signalling, a cDNA library from R. nigricans exposed to progesterone was prepared and a sequence coding for a Gβ subunit was searched for. Using degenerate primers, two sequences, RnGPB1 and RnGPB2, were identified that exhibited a high degree of identity with those for Gβ from other filamentous fungi, but not from yeast. The presence of more than one Gβ subunit is very rare among the fungi, and it has been to date reported only for Rhizopus oryzae. We have shown that progesterone increases the expression of RnGPB1, but has no influence on the expression of RnGPB2. Therefore, our studies imply the involvement of Gβ subunit 1 in the response of R. nigricans to progesterone. Moreover, the Gβ subunit is subjected to endogenous ADP-ribosylation in the presence of NAD, which could be important in some, as yet unknown, cell process. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Nataša Jeraj
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
15
|
Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol 2012; 49:271-83. [PMID: 22387367 DOI: 10.1016/j.fgb.2012.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/26/2022]
Abstract
To gain insight into the role of G protein-mediated signaling in virulence and development of the soilborne, wilt causing fungus Verticillium dahliae, the G protein β subunit gene (named as VGB) was disrupted in tomato race 1 strain of V. dahliae. A resulting mutant strain, 70ΔGb15, displayed drastic reduction in virulence, increased microsclerotia formation and conidiation, and decreased ethylene production compared to the corresponding wild type (wt) strain 70wt-r1. Moreover, 70ΔGb15 exhibited an elongated rather than radial growth pattern on agar media. A transformant of 70ΔGb15 (named as 70ΔGbPKAC1) that carries an extra copy of VdPKAC1, a V. dahliae gene encoding the catalytic subunit of the cAMP-dependent protein kinase A, exhibited wt growth pattern and conidiation, was unable to form microsclerotia, produced high amounts of ethylene, and exhibited virulence between that of 70ΔGb15 and 70wt-r1 on tomato plants. Phenotypical changes observed in 70ΔGb15 and 70ΔGbPKAC1 correlated with transcriptional changes in several genes involved in signaling (MAP kinase VMK1) and development (hydrophobin VDH1 and ACC synthase ACS1) of V. dahliae. Results from the present work suggest a linkage between VGB and VdPKAC1 signaling pathways in regulating virulence, hormone production and development in V. dahliae.
Collapse
Affiliation(s)
- Aliki K Tzima
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
16
|
Kim HS, Park SY, Lee S, Adams EL, Czymmek K, Kang S. Loss of cAMP-dependent protein kinase A affects multiple traits important for root pathogenesis by Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:719-732. [PMID: 21261464 DOI: 10.1094/mpmi-11-10-0267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The soilborne fungal pathogen Fusarium oxysporum causes vascular wilt and root rot diseases in many plant species. We investigated the role of cyclic AMP-dependent protein kinase A of F. oxysporum (FoCPKA) in growth, morphology, and root attachment, penetration, and pathogenesis in Arabidopsis thaliana. Affinity of spore attachment to root surfaces of A. thaliana, observed microscopically and measured by atomic force microscopy, was reduced by a loss-of-function mutation in the gene encoding the catalytic subunit of FoCPKA. The resulting mutants also failed to penetrate into the vascular system of A. thaliana roots and lost virulence. Even when the mutants managed to enter the vascular system via physically wounded roots, the degree of vascular colonization was significantly lower than that of the corresponding wild-type strain O-685 and no noticeable disease symptoms were observed. The mutants also had reduced vegetative growth and spore production, and their hyphal growth patterns were distinct from those of O-685. Coinoculation of O-685 with an focpkA mutant or a strain nonpathogenic to A. thaliana significantly reduced disease severity and the degree of root colonization by O-685. Several experimental tools useful for studying mechanisms of fungal root pathogenesis are also introduced.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mukherjee M, Kim JE, Park YS, Kolomiets MV, Shim WB. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. MOLECULAR PLANT PATHOLOGY 2011; 12:479-91. [PMID: 21535353 PMCID: PMC6640359 DOI: 10.1111/j.1364-3703.2010.00686.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
GBB1, a heterotrimeric G-protein β-subunit gene, was shown to be a key regulator of fumonisin B(1) (FB(1) ) biosynthesis in the maize pathogen Fusarium verticillioides. In this study, we performed functional analyses of genes that encode putative RGS (regulators of G-protein signalling) proteins and PhLPs (phosducin-like proteins) in F. verticillioides. These proteins are known to regulate heterotrimeric G-protein activity by altering the intrinsic guanosine triphosphatase (GTPase) activity, which, in turn, influences the signalling mechanisms that control fungal growth, virulence and secondary metabolism. Our aim was to isolate and characterize gene(s) that are under the transcriptional control of GBB1, and to test the hypothesis that these genes are directly associated with FB(1) regulation and fungal development in F. verticillioides on maize kernels. We first identified eight genes (two PhLPs and six RGSs) in the F. verticillioides genome, and a subsequent transcriptional expression study revealed that three RGS genes were up-regulated in the gbb1 deletion (Δgbb1) mutant and one RGS gene was up-regulated in the wild-type. To characterize their function, we generated knockout mutants using a homologous recombination strategy. When grown on autoclaved nonviable kernels, two mutants (ΔflbA2 and ΔrgsB) produced significantly higher levels of FB(1) compared with the wild-type progenitor, suggesting that the two mutated genes are negative regulators of FB(1) biosynthesis. ΔflbA2 also showed a severe curly conidia germination pattern, which was contradictory to that observed in the Δgbb1 strain. Strikingly, when these mutants were grown on live maize kernels, we observed contrasting FB(1) and conidiation phenotypes in fungal mutants, which strongly suggests that these G-protein regulators have an impact on how F. verticillioides responds to host/environmental factors. Our data also provide evidence that fungal G-protein signalling is important for modulating the ethylene biosynthetic pathway in maize kernels.
Collapse
Affiliation(s)
- Mala Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | |
Collapse
|
18
|
Heimel K, Scherer M, Schuler D, Kämper J. The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. THE PLANT CELL 2010; 22:2908-22. [PMID: 20729384 PMCID: PMC2947178 DOI: 10.1105/tpc.110.076265] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/30/2010] [Accepted: 08/05/2010] [Indexed: 05/19/2023]
Abstract
Regulation of the cell cycle and morphogenetic switching during pathogenic and sexual development in Ustilago maydis is orchestrated by a concerted action of the a and b mating-type loci. Activation of either mating-type locus triggers the G2 cell cycle arrest that is a prerequisite for the formation of the infectious dikaryon; this cell cycle arrest is released only after penetration of the host plant. Here, we show that bW, one of the two homeodomain transcription factors encoded by the b mating-type locus, and the zinc-finger transcription factor Rbf1, a master regulator for pathogenic development, interact with Clp1 (clampless 1), a protein required for the distribution of nuclei during cell division of the dikaryon. In addition, we identify Cib1, a previously undiscovered bZIP transcription factor required for pathogenic development, as a Clp1-interacting protein. Clp1 interaction with bW blocks b-dependent functions, such as the b-dependent G2 cell cycle arrest and dimorphic switching. The interaction of Clp1 with Rbf1 results in the repression of the a-dependent pheromone pathway, conjugation tube formation, and the a-induced G2 cell cycle arrest. The concerted interaction of Clp1 with Rbf1 and bW coordinates a- and b-dependent cell cycle control and ensures cell cycle release and progression at the onset of biotrophic development.
Collapse
Affiliation(s)
- Kai Heimel
- Department of Genetics, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
- Max-Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Mario Scherer
- Max-Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - David Schuler
- Department of Genetics, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Jörg Kämper
- Department of Genetics, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
- Max-Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
19
|
Abstract
The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.
Collapse
|
20
|
G(alpha) and Gbeta proteins regulate the cyclic AMP pathway that is required for development and pathogenicity of the phytopathogen Mycosphaerella graminicola. EUKARYOTIC CELL 2009; 8:1001-13. [PMID: 19411619 DOI: 10.1128/ec.00258-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified and functionally characterized genes encoding three Galpha proteins and one Gbeta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Galpha(i) and Galpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.
Collapse
|
21
|
Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. Ustilago maydis as a Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:423-45. [PMID: 19400641 DOI: 10.1146/annurev-phyto-080508-081923] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Ustilago maydis-maize pathosystem has emerged as the current model for plant pathogenic basidiomycetes and as one of the few models for a true biotrophic interaction that persists throughout fungal development inside the host plant. This is based on the highly advanced genetic system for both the pathogen and its host, the ability to propagate U. maydis in axenic culture, and its unique capacity to induce prominent disease symptoms (tumors) on all aerial parts of maize within less than a week. The corn smut pathogen, though economically not threatening, will continue to serve as a model for related obligate biotrophic fungi such as the rusts, but also for closely related smut species that induce symptoms only in the flower organs of their hosts. In this review we describe the most prominent features of the U. maydis-maize pathosystem as well as genes and pathways most relevant to disease. We highlight recent developments that place this system at the forefront of understanding the function of secreted effectors in eukaryotic pathogens and describe the expected spin-offs for closely related species exploiting comparative genomics approaches.
Collapse
Affiliation(s)
- Thomas Brefort
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Yu HY, Seo JA, Kim JE, Han KH, Shim WB, Yun SH, Lee YW. Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae. MICROBIOLOGY-SGM 2008; 154:392-401. [PMID: 18227243 PMCID: PMC2885625 DOI: 10.1099/mic.0.2007/012260-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homothallic ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms underlying its growth, development and virulence remain largely unknown. To better understand such mechanisms, we studied the heterotrimeric G proteins of G. zeae, which are known to control crucial signalling pathways that regulate various cellular and developmental responses in fungi. Three putative Gα subunits, GzGPA1, GzGPA2 and GzGPA3, and one Gβ subunit, GzGPB1, were identified in the F. graminearum genome. Deletion of GzGPA1, a homologue of the Aspergillus nidulans Gα gene fadA, resulted in female sterility and enhanced DON and ZEA production, suggesting that GzGPA1 is required for normal sexual reproduction and repression of toxin biosynthesis. The production of DON and ZEA was also enhanced in the GzGPB1 mutant, suggesting that both GαGzGPA1 and GβGzGPB1 negatively control mycotoxin production. Deletion of GzGPA2, which encodes a Gα protein similar to A. nidulans GanB, caused reduced pathogenicity and increased chitin accumulation in the cell wall, implying that GzGPA2 has multiple functions. Our study shows that G. zeae heterotrimeric G protein subunits can regulate vegetative growth, sexual development, toxin production and pathogenicity.
Collapse
Affiliation(s)
- Hye-Young Yu
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jeong-Ah Seo
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jung-Eun Kim
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 565-701, Republic of Korea
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Yin-Won Lee
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
23
|
Abstract
Filamentous fungi are multicellular eukaryotic organisms known for nutrient recycling as well as for antibiotic and food production. This group of organisms also contains the most devastating plant pathogens and several important human pathogens. Since the first report of heterotrimeric G proteins in filamentous fungi in 1993, it has been demonstrated that G proteins are essential for growth, asexual and sexual development, and virulence in both animal and plant pathogenic filamentous species. Numerous G protein subunit and G protein-coupled receptor genes have been identified, many from whole-genome sequences. Several regulatory pathways have now been delineated, including those for nutrient sensing, pheromone response and mating, and pathogenesis. This review provides a comparative analysis of G protein pathways in several filamentous species, with discussion of both unifying themes and important unique signaling paradigms.
Collapse
Affiliation(s)
- Liande Li
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
24
|
Zhao X, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal pathogenesis. EUKARYOTIC CELL 2007; 6:1701-14. [PMID: 17715363 PMCID: PMC2043402 DOI: 10.1128/ec.00216-07] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Xinhua Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
25
|
Chen D, Janganan TK, Chen G, Marques ER, Kress MR, Goldman GH, Walmsley AR, Borges-Walmsley MI. The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis. Mol Microbiol 2007; 65:761-79. [PMID: 17635191 PMCID: PMC2064555 DOI: 10.1111/j.1365-2958.2007.05824.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paracoccidioides brasiliensis is a human pathogenic fungus that switches from a saprobic mycelium to a pathogenic yeast. Consistent with the morphological transition being regulated by the cAMP-signalling pathway, there is an increase in cellular cAMP levels both transiently at the onset (< 24 h) and progressively in the later stages (> 120 h) of the transition to the yeast form, and this transition can be modulated by exogenous cAMP. We have cloned the cyr1 gene encoding adenylate cyclase (AC) and established that its transcript levels correlate with cAMP levels. In addition, we have cloned the genes encoding three Gα (Gpa1–3), Gβ (Gpb1) and Gγ (Gpg1) G proteins. Gpa1 and Gpb1 interact with one another and the N-terminus of AC, but neither Gpa2 nor Gpa3 interacted with Gpb1 or AC. The interaction of Gpa1 with Gpb1 was blocked by GTP, but its interaction with AC was independent of bound nucleotide. The transcript levels for gpa1, gpb1 and gpg1 were similar in mycelium, but there was a transient excess of gpb1 during the transition, and an excess of gpa1 in yeast. We have interpreted our findings in terms of a novel signalling mechanism in which the activity of AC is differentially modulated by Gpa1 and Gpb1 to maintain the signal over the 10 days needed for the morphological switch.
Collapse
Affiliation(s)
- Daliang Chen
- Centre for Infectious Diseases, Wolfson Research Institute, School of Biological and Biomedical Sciences, University of Durham – Queen's CampusStockton-on-Tees TS17 6BH, UK.
| | - Thamarai K Janganan
- Centre for Infectious Diseases, Wolfson Research Institute, School of Biological and Biomedical Sciences, University of Durham – Queen's CampusStockton-on-Tees TS17 6BH, UK.
| | - Gongyou Chen
- Centre for Infectious Diseases, Wolfson Research Institute, School of Biological and Biomedical Sciences, University of Durham – Queen's CampusStockton-on-Tees TS17 6BH, UK.
| | - Everaldo R Marques
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/NCEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Marcia R Kress
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/NCEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gustavo H Goldman
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/NCEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Adrian R Walmsley
- Centre for Infectious Diseases, Wolfson Research Institute, School of Biological and Biomedical Sciences, University of Durham – Queen's CampusStockton-on-Tees TS17 6BH, UK.
- For correspondence. E-mail , ; Tel. (+44) (0)191 334 0465 or 0467; Fax (+44) (0)191 334 0468
| | - M Inês Borges-Walmsley
- Centre for Infectious Diseases, Wolfson Research Institute, School of Biological and Biomedical Sciences, University of Durham – Queen's CampusStockton-on-Tees TS17 6BH, UK.
- For correspondence. E-mail , ; Tel. (+44) (0)191 334 0465 or 0467; Fax (+44) (0)191 334 0468
| |
Collapse
|
26
|
Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE. Genetics of morphogenesis and pathogenic development of Ustilago maydis. ADVANCES IN GENETICS 2007; 57:1-47. [PMID: 17352901 DOI: 10.1016/s0065-2660(06)57001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ustilago maydis has emerged as an important model system for the study of fungi. Like many fungi, U. maydis undergoes remarkable morphological transitions throughout its life cycle. Fusion of compatible, budding, haploid cells leads to the production of a filamentous dikaryon that penetrates and colonizes the plant, culminating in the production of diploid teliospores within fungal-induced plant galls or tumors. These dramatic morphological transitions are controlled by components of various signaling pathways, including the pheromone-responsive MAP kinase and cAMP/PKA (cyclic AMP/protein kinase A) pathways, which coregulate the dimorphic switch and sexual development of U. maydis. These signaling pathways must somehow cooperate with the regulation of the cytoskeletal and cell cycle machinery. In this chapter, we provide an overview of these processes from pheromone perception and mating to gall production and sporulation in planta. Emphasis is placed on the genetic determinants of morphogenesis and pathogenic development of U. maydis and on the fungus-host interaction. Additionally, we review advances in the development of tools to study U. maydis, including the recently available genome sequence. We conclude with a brief assessment of current challenges and future directions for the genetic study of U. maydis.
Collapse
Affiliation(s)
- Steven J Klosterman
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
27
|
Seo JA, Han KH, Yu JH. Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of Aspergillus nidulans. Genetics 2005; 171:81-9. [PMID: 15944346 PMCID: PMC1456535 DOI: 10.1534/genetics.105.042796] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vegetative growth signaling in the filamentous fungus Aspergillus nidulans is primarily mediated by the heterotrimeric G-protein composed of FadA (G alpha), SfaD (G beta), and a presumed G gamma. Analysis of the A. nidulans genome identified a single gene named gpgA encoding a putative G gamma-subunit. The predicted GpgA protein consists of 90 amino acids showing 72% similarity with yeast Ste18p. Deletion (delta) of gpgA resulted in restricted vegetative growth and lowered asexual sporulation. Moreover, similar to the delta sfaD mutant, the delta gpgA mutant was unable to produce sexual fruiting bodies (cleistothecia) in self-fertilization and was severely impaired with cleistothecial development in outcross, indicating that both SfaD and GpgA are required for fruiting body formation. Developmental and morphological defects caused by deletion of flbA encoding an RGS protein negatively controlling FadA-mediated vegetative growth signaling were suppressed by delta gpgA, indicating that GpgA functions in FadA-SfaD-mediated vegetative growth signaling. However, deletion of gpgA could not bypass the need for the early developmental activator FluG in asexual sporulation, suggesting that GpgA functions in a separate signaling pathway. We propose that GpgA is the only A. nidulans G gamma-subunit and is required for normal vegetative growth as well as proper asexual and sexual developmental progression.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
28
|
Delgado-Jarana J, Martínez-Rocha AL, Roldán-Rodriguez R, Roncero MIG, Di Pietro A. Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol 2005; 42:61-72. [PMID: 15588997 DOI: 10.1016/j.fgb.2004.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 10/06/2004] [Indexed: 11/25/2022]
Abstract
The vascular wilt fungus Fusarium oxysporum causes disease in a wide variety of crops. A signalling cascade controlled by the extracellular-regulated mitogen-activated protein kinase (MAPK) Fmk1 was previously found to be required for plant infection. To investigate the role of the heterotrimeric G-protein beta subunit Fgb1 as a putative upstream component of the Fmk1 signalling cascade, we generated F. oxysporum strains carrying either a Deltafgb1 loss-of-function allele or an fgb1(W115G) allele that mimicks the yeast STE4(W136G) mutation resulting in insensitivity to the cognate G-protein alpha subunit. Both types of mutants showed reduced virulence on tomato plants, similar to Deltafmk1 strains. However, in contrast to the latter, Deltafgb1 mutants displayed an abnormal hyphal growth phenotype with highly elongated cells, increased tip growth, a completely straight hyphal growth axis, and reduced subapical branching. Exogenous cAMP reversed part but not all of the Deltafgb1 growth phenotypes. Likewise, expression of the fgb1(W115G) allele only partly reversed growth phenotypes and failed to restore virulence on plants, whereas reintroduction of a functional fgb1 allele fully restored the wild type phenotype. Immunoblot analysis showed that levels of Fmk1 phosphorylation in fgb1 mutants were comparable to those in the wild type strain. Our results support a model in which Fgb1 controls hyphal growth, development and virulence in F. oxysporum both through cAMP-dependent and -independent pathways.
Collapse
Affiliation(s)
- Jesús Delgado-Jarana
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales Edif. C5, 14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
29
|
Feldbrügge M, Kämper J, Steinberg G, Kahmann R. Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 2005; 7:666-72. [PMID: 15556041 DOI: 10.1016/j.mib.2004.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plant pathogenic fungus Ustilago maydis induces disease only in its dikaryotic stage that is generated after mating. This process involves coordinated cAMP and mitogen-activated protein kinase signalling to regulate transcriptional as well as morphological responses. Among the induced products is the key regulator for pathogenic development. Recent advances identified crucial nodes that interconnect these pathways. The key regulator orchestrates a complex transcriptional cascade, the components of which have been uncovered by genomic strategies. This is complemented by insights into organization, dynamics and function of the cytoskeleton, which begin to establish the links between signalling, intracellular transport processes and morphology.
Collapse
Affiliation(s)
- Michael Feldbrügge
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Kahmann R, Kämper J. Ustilago maydis: how its biology relates to pathogenic development. THE NEW PHYTOLOGIST 2004; 164:31-42. [PMID: 33873482 DOI: 10.1111/j.1469-8137.2004.01156.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The smut fungus Ustilago maydis is a ubiquitous pathogen of corn. Although of minor economical importance, U. maydis has become the most attractive model among the plant pathogenic basidiomycetes under study. This fungus undergoes a number of morphological transitions throughout its life-cycle, the most prominent being the dimorphic switch from budding to filamentous growth that is prerequisite for entry into the biotrophic phase. The morphological transition is controlled by the tetrapolar mating system. Understanding the mating system has allowed connections to signalling cascades operating during pathogenic development. Here, we will review the status and recent insights into understanding pathogenic development of U. maydis and emphasize areas and directions of future research. Contents Summary 31 I. Introduction 31 II. Important tools for exprimentation with Ustilago myadis 32 III. Cell fusion requres a complex signalling network 33 IV. Development of the dikaryon: the bE/bW complex at work 34 V. A connection between cell cycle, morphogenesis and virulence 36 VI. The early infection stages 38 VII. Proliferation and differentiaton in the plant host 38 VIII. The Ustilago maydis genome 39 IX. Conclusions 40 Acknowledgements 40 References 40.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kämper
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|