1
|
Wu L, Bian W, Abubakar YS, Lin J, Yan H, Zhang H, Wang Z, Wu C, Shim W, Lu GD. FvKex2 is required for development, virulence, and mycotoxin production in Fusarium verticillioides. Appl Microbiol Biotechnol 2024; 108:228. [PMID: 38386129 PMCID: PMC10884074 DOI: 10.1007/s00253-024-13022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.
Collapse
Affiliation(s)
- Limin Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - Wenyin Bian
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jiayi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Zonghua Wang
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Changbiao Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| | - Guo-Dong Lu
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Zhang W, Forester NT, Chettri P, Heilijgers M, Mace WJ, Maes E, Morozova Y, Applegate ER, Johnson RD, Johnson LJ. Characterization of the Biosynthetic Gene Cluster for the Ribosomally Synthesized Cyclic Peptide Epichloëcyclins in Epichloë festucae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13965-13978. [PMID: 37704203 PMCID: PMC10540207 DOI: 10.1021/acs.jafc.3c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The various grass-induced epichloëcyclins of the Epichloë spp. are ribosomally synthesized and post-translationally modified peptides (RiPPs), produced as small, secreted cyclopeptides from a single gene, gigA. Here, four clustered and coregulated genes (gigA, gigB, gigC, and kexB) with predicted roles in epichloëcyclin production in Epichloë festucae were evaluated through gene disruption. Subsequent chemical analysis indicates that GigB is a DUF3328 domain-containing protein associated with cyclization of epichloëcyclins; GigC is a methyltransferase enzyme responsible for N-methylation of desmethylepichloëcyclins; and KexB is a subtilisin-like enzyme, partly responsible for the propeptide cleavage of epichloëcyclin intermediates. Symbiotic effects on the host phenotype were not observed for gigA, gigC, or kexB mutants, although ΔgigB infection correlated with increased host tiller height and biomass, while only ΔkexB exhibited an effect on endophyte morphology. Disrupting epichloëcyclin biosynthesis showed negligible influence on the biosynthesis of E. festucae-associated alkaloids. Epichloëcyclins may perform other secondary metabolism functions in Epichloë and other fungi.
Collapse
Affiliation(s)
- Wei Zhang
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Natasha T. Forester
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Pranav Chettri
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Maurice Heilijgers
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Wade J. Mace
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Evelyne Maes
- Lincoln
Research Centre, AgResearch Limited, Lincoln 7608, New Zealand
| | - Yulia Morozova
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Emma R. Applegate
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Richard D. Johnson
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| | - Linda J. Johnson
- Grasslands
Research Centre, AgResearch Limited, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
4
|
Burchacka E, Pięta P, Łupicka-Słowik A. Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 2021; 146:112523. [PMID: 34902742 DOI: 10.1016/j.biopha.2021.112523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Four types of antifungal drugs are available that include inhibitors of ergosterol synthesis, of fungal RNA biosynthesis, and of cell wall biosynthesis as well as physiochemical regulators of fungal membrane sterols. Increasing resistance to antifungal drugs can severely limit treatment options of fungal nail infections, vaginal candidiasis, ringworm, blastomycosis, histoplasmosis, and Candida infections of the mouth, throat, and esophagus, among other infections. Development of strategies focused on new fungicides can effectively help tackle troublesome fungal diseases. The virulence and optimal growth of fungi depend on various extracellular secreted factors, among which proteases, such as serine proteases, are of particular interest. A specific extracellular proteolytic system enables fungi to survive and penetrate the tissues. Given the role of fungal proteases in infection, any molecule capable of selectively and specifically inhibiting their activity can lead to the development of potential drugs. Owing to their specific mode of action, fungal protease inhibitors can avoid fungal resistance observed with currently available treatments. Although fungal secreted proteases have been extensively studied as potential virulence factors, our understanding of the substrate specificity of such proteases remains poor. In this review, we summarize the recent advances in the design and development of specific serine protease inhibitors and provide a brief history of the compounds that inhibit fungal serine protease activity.
Collapse
Affiliation(s)
- E Burchacka
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland.
| | - P Pięta
- Department of Bionic and Medical Experimental Biology, Poznań University of Medical Sciences, Parkowa 2 St, 60-775 Poznań, Poland
| | - A Łupicka-Słowik
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
Identification of Genes Involved in the Synthesis of the Fungal Cell Wall Component Nigeran and Regulation of Its Polymerization in Aspergillus luchuensis. Appl Environ Microbiol 2021; 87:e0114421. [PMID: 34406826 DOI: 10.1128/aem.01144-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Certain Aspergillus and Penicillium spp. produce the fungal cell wall component nigeran, an unbranched d-glucan with alternating α-1,3- and α-1,4-glucoside linkages, under nitrogen starvation. The mechanism underlying nigeran biosynthesis and the physiological role of nigeran in fungal survival are not clear. We used RNA sequencing (RNA-seq) to identify genes involved in nigeran synthesis in the filamentous fungus Aspergillus luchuensis when grown under nitrogen-free conditions. agsB, which encodes a putative α-1,3-glucan synthase, and two adjacent genes (agtC and gnsA) were upregulated under conditions of nitrogen starvation. Disruption of agsB in A. luchuensis (ΔagsB) resulted in the complete loss of nigeran synthesis. Furthermore, the overexpression of agsB in an Aspergillus oryzae strain that cannot produce nigeran resulted in nigeran synthesis. These results indicated that agsB encodes a nigeran synthase. Therefore, we have renamed the A. luchuensis agsB gene the nigeran synthase gene (nisA). Nigeran synthesis in an agtC mutant (ΔagtC) increased to 121%; conversely, those in the ΔgnsA and ΔagtC ΔgnsA strains decreased to 64% and 63%, respectively, compared to that in the wild-type strain. Our results revealed that AgtC and GnsA play an important role in regulating not only the quantity of nigeran but also its polymerization. Collectively, our results demonstrated that nisA (agsB) is essential for nigeran synthesis in A. luchuensis, whereas agtC and gnsA contribute to the regulation of nigeran synthesis and its polymerization. This research provides insights into fungal cell wall biosynthesis, specifically the molecular evolution of fungal α-glucan synthase genes and the potential utilization of nigeran as a novel biopolymer. IMPORTANCE The fungal cell wall is composed mainly of polysaccharides. Under nitrogen-free conditions, some Aspergillus and Penicillium spp. produce significant levels of nigeran, a fungal cell wall polysaccharide composed of alternating α-1,3/1,4-glucosidic linkages. The mechanisms regulating the biosynthesis and function of nigeran are unknown. Here, we performed RNA sequencing of Aspergillus luchuensis cultured under nitrogen-free or low-nitrogen conditions. A putative α-1,3-glucan synthase gene, whose transcriptional level was upregulated under nitrogen-free conditions, was demonstrated to encode nigeran synthase. Furthermore, two genes encoding an α-glucanotransferase and a hypothetical protein were shown to be involved in controlling the nigeran content and molecular weight. This study reveals genes involved in the synthesis of nigeran, a potential biopolymer, and provides a deeper understanding of fungal cell wall biosynthesis.
Collapse
|
6
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Chelius C, Huso W, Reese S, Doan A, Lincoln S, Lawson K, Tran B, Purohit R, Glaros T, Srivastava R, Harris SD, Marten MR. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans. Mol Cell Proteomics 2020; 19:1310-1329. [PMID: 32430394 PMCID: PMC8014999 DOI: 10.1074/mcp.ra119.001769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a β-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8-4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways.
Collapse
Affiliation(s)
- Cynthia Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Samantha Reese
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexander Doan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Kelsi Lawson
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Bao Tran
- BioScience Mass Spectrometry Facility, The U.S. Army CCDC Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Maryland, USA
| | - Raj Purohit
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Trevor Glaros
- BioSciences Division, B11 Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Moroz OV, Blagova E, Reiser V, Saikia R, Dalal S, Jørgensen CI, Bhatia VK, Baunsgaard L, Andersen B, Svendsen A, Wilson KS. Novel Inhibitory Function of the Rhizomucor miehei Lipase Propeptide and Three-Dimensional Structures of Its Complexes with the Enzyme. ACS OMEGA 2019; 4:9964-9975. [PMID: 31460089 PMCID: PMC6648591 DOI: 10.1021/acsomega.9b00612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host.
Collapse
Affiliation(s)
- Olga V. Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Elena Blagova
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Verena Reiser
- Novozymes
A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Rakhi Saikia
- Novozymes
A/S, Plot No. 32, 47-50,
Genisys Building, Whitefield, EPIP Zone, Brookefield, Bengaluru, Karnataka 560066, India
| | - Sohel Dalal
- Novozymes
A/S, Plot No. 32, 47-50,
Genisys Building, Whitefield, EPIP Zone, Brookefield, Bengaluru, Karnataka 560066, India
| | | | | | | | | | - Allan Svendsen
- Novozymes
A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Keith S. Wilson
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| |
Collapse
|
9
|
Tokashiki J, Hayashi R, Yano S, Watanabe T, Yamada O, Toyama H, Mizutani O. Influence of α-1,3-glucan synthase gene agsE on protoplast formation for transformation of Aspergillus luchuensis. J Biosci Bioeng 2019; 128:129-134. [PMID: 30824179 DOI: 10.1016/j.jbiosc.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022]
Abstract
Aspergillus luchuensis NBRC4314 recently underwent genome sequencing. We have not used the frequently used protoplast-polyethylene glycol (PEG) method but have used agrobacterium-mediated transformation (AMT) to genetically engineer this strain because it was difficult to generate protoplasts using commercial cell wall lytic enzymes. In this study, we initially investigated the various conditions for protoplast formation in A. luchuensis. We found that A. luchuensis protoplasts could be generated using a minimal medium for the preculture medium, a static culture for the preculture condition, and Yatalase and α-1,3-glucanase as cell-wall lytic enzymes. These protoplasts could then be transformed with the protoplast-PEG method. Because α-1,3-glucanase was needed to form protoplasts in A. luchuensis, we investigated the role of the α-1,3-glucan synthase gene agsE in protoplast formation, one of five α-1,3-glucan synthase genes in A. luchuensis and a homolog of the major α-1,3-glucan synthase agsB in Aspergillus nidulans. We disrupted agsE in A. luchuensis (ΔagsE) with AMT and found that protoplast formation in ΔagsE was comparable with protoplast formation in Aspergillus oryzae with Yatalase. The ΔagsE protoplasts were also competent for transformation with the protoplast-PEG method. Hence, agsE appears to inhibit protoplast formation in A. luchuensis.
Collapse
Affiliation(s)
- Jikian Tokashiki
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Osamu Yamada
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hirohide Toyama
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan; Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Osamu Mizutani
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
10
|
Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae. Front Microbiol 2018; 9:690. [PMID: 29686660 PMCID: PMC5900794 DOI: 10.3389/fmicb.2018.00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | | | | | | | - Katsuya Gomi
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masayuki Machida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Yoshimi A, Miyazawa K, Abe K. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. J Fungi (Basel) 2017; 3:E63. [PMID: 29371579 PMCID: PMC5753165 DOI: 10.3390/jof3040063] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
12
|
Liu F, Ma Q, Dang X, Wang Y, Song Y, Meng X, Bao J, Chen J, Pan G, Zhou Z. Identification of a new subtilisin-like protease NbSLP2 interacting with cytoskeletal protein septin in Microsporidia Nosema bombycis. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Yoshimi A, Hirama M, Tsubota Y, Kawakami K, Zhang S, Gomi K, Abe K. Characterization of Cell Wall α-1,3-Glucan-Deficient Mutants in Aspergillus oryzae Isolated by a Screening Method Based on Their Sensitivities to Congo Red or Lysing Enzymes. J Appl Glycosci (1999) 2017; 64:65-73. [PMID: 34354498 PMCID: PMC8056903 DOI: 10.5458/jag.jag.jag-2017_004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022] Open
Abstract
We previously reported that sensitivity to Congo Red (CR) or Lysing Enzymes (LE) is affected by the loss of cell-wall α-1,3-glucan (AG) in Aspergillus nidulans. We found that the amount of CR adsorbed to AG was significantly less than the amount adsorbed to β-1,3-glucan (BG) or chitin, suggesting that loss of cell-wall AG would increase exposure of BG on the cell surface, and thereby increase the sensitivity to CR. Generally, fungal BGs are known as biological response modifiers because of their recognition by Dectin-1 receptors in human immune systems. Therefore, isolation of AG-deficient mutants in Aspergillus oryzae has been used in the Japanese fermentation industry to create strains with increased ability to promote immune responses. Here, we aimed to isolate AG-deficient strains by mutagenizing A. oryzae conidia with chemical mutagens. Based on the increased sensitivity to CR in AG-deficient strains of A. nidulans and A. oryzae, we established a screening method for isolation of AG-deficient strains. Several candidate AG-deficient mutants of A. oryzae were isolated using the screening method; these strains showed increased sensitivity to CR and/or LE. Cytokine production was increased in the dendritic cells co-incubated with germinated conidia of the AG-deficient mutants. Furthermore, according to a Dectin-1 NFAT (nuclear factor of activator T cells)-GFP (green fluorescent protein) reporter assay, Dectin-1 response levels in the AG-deficient mutants were higher than those in wild-type A. oryzae. These results suggest that we successfully isolated AG-deficient mutants of A. oryzae with immunostimulatory effects.
Collapse
Affiliation(s)
- Akira Yoshimi
- 1 ABE-project, New Industry Creation Hatchery Center, Tohoku University
| | | | | | - Kazuyoshi Kawakami
- 3 Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| | - Silai Zhang
- 4 Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University
| | - Katsuya Gomi
- 4 Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Sciences, Tohoku University
| | - Keietsu Abe
- 1 ABE-project, New Industry Creation Hatchery Center, Tohoku University.,5 Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University.,6 Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
14
|
Kobayashi T, Maeda H, Takeuchi M, Yamagata Y. Deletion of admB gene encoding a fungal ADAM affects cell wall construction in Aspergillus oryzae. Biosci Biotechnol Biochem 2017; 81:1041-1050. [DOI: 10.1080/09168451.2016.1270741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ∆admA∆admB and ∆admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ∆admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ∆admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.
Collapse
Affiliation(s)
- Takuji Kobayashi
- Department of Applied Life Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi Maeda
- Department of Applied Life Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Michio Takeuchi
- Department of Applied Life Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Youhei Yamagata
- Department of Applied Life Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
15
|
Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant. J Biosci Bioeng 2017; 123:287-293. [DOI: 10.1016/j.jbiosc.2016.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022]
|
16
|
Yamada O, Machida M, Hosoyama A, Goto M, Takahashi T, Futagami T, Yamagata Y, Takeuchi M, Kobayashi T, Koike H, Abe K, Asai K, Arita M, Fujita N, Fukuda K, Higa KI, Horikawa H, Ishikawa T, Jinno K, Kato Y, Kirimura K, Mizutani O, Nakasone K, Sano M, Shiraishi Y, Tsukahara M, Gomi K. Genome sequence of Aspergillus luchuensis NBRC 4314. DNA Res 2016; 23:507-515. [PMID: 27651094 PMCID: PMC5144674 DOI: 10.1093/dnares/dsw032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/02/2016] [Indexed: 12/03/2022] Open
Abstract
Awamori is a traditional distilled beverage made from steamed Thai-Indica rice in Okinawa, Japan. For brewing the liquor, two microbes, local kuro (black) koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae are involved. In contrast, that yeasts are used for ethanol fermentation throughout the world, a characteristic of Japanese fermentation industries is the use of Aspergillus molds as a source of enzymes for the maceration and saccharification of raw materials. Here we report the draft genome of a kuro (black) koji mold, A. luchuensis NBRC 4314 (RIB 2604). The total length of nonredundant sequences was nearly 34.7 Mb, comprising approximately 2,300 contigs with 16 telomere-like sequences. In total, 11,691 genes were predicted to encode proteins. Most of the housekeeping genes, such as transcription factors and N-and O-glycosylation system, were conserved with respect to Aspergillus niger and Aspergillus oryzae An alternative oxidase and acid-stable α-amylase regarding citric acid production and fermentation at a low pH as well as a unique glutamic peptidase were also found in the genome. Furthermore, key biosynthetic gene clusters of ochratoxin A and fumonisin B were absent when compared with A. niger genome, showing the safety of A. luchuensis for food and beverage production. This genome information will facilitate not only comparative genomics with industrial kuro-koji molds, but also molecular breeding of the molds in improvements of awamori fermentation.
Collapse
Affiliation(s)
- Osamu Yamada
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Masayuki Machida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Akira Hosoyama
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Toru Takahashi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Taiki Futagami
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Youhei Yamagata
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Michio Takeuchi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | | | - Hideaki Koike
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Keietsu Abe
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Kiyoshi Asai
- Computational Biology Research Center, AIST, Koto-ku, Tokyo 135-0064, Japan
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Nobuyuki Fujita
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kazuro Fukuda
- Asahi Breweries, LTD, Sumida-ku, Tokyo 130-8602, Japan
| | - Ken-Ichi Higa
- Industrial Technology Center, Okinawa Prefectural Government, Uruma, Okinawa 904-2234, Japan
| | - Hiroshi Horikawa
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | | | - Koji Jinno
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Yumiko Kato
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kohtaro Kirimura
- Department of Applied Chemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Osamu Mizutani
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kaoru Nakasone
- Kinki University Faculty of Engineering, Higashi-hiroshima, Hiroshima 739-2116, Japan
| | - Motoaki Sano
- Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501, Japan
| | - Yohei Shiraishi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | | | - Katsuya Gomi
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
17
|
Yoshimi A, Miyazawa K, Abe K. Cell wall structure and biogenesis in Aspergillus species. Biosci Biotechnol Biochem 2016; 80:1700-11. [DOI: 10.1080/09168451.2016.1177446] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Miyazawa K, Yoshimi A, Zhang S, Sano M, Nakayama M, Gomi K, Abe K. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase. Biosci Biotechnol Biochem 2016; 80:1853-63. [PMID: 27442340 DOI: 10.1080/09168451.2016.1209968] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.
Collapse
Affiliation(s)
- Ken Miyazawa
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Akira Yoshimi
- b Microbial Genomics Laboratory , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| | - Silai Zhang
- c Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Motoaki Sano
- d Genome Biotechnology Laboratory , Kanazawa Institute of Technology , Hakusan , Japan
| | - Mayumi Nakayama
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Keietsu Abe
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan.,b Microbial Genomics Laboratory , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| |
Collapse
|
19
|
Maeda H, Katase T, Sakai D, Takeuchi M, Kusumoto KI, Amano H, Ishida H, Abe K, Yamagata Y. A novel non-thermostable deuterolysin from Aspergillus oryzae. Biosci Biotechnol Biochem 2016; 80:1813-9. [PMID: 27050120 DOI: 10.1080/09168451.2016.1166933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.
Collapse
Affiliation(s)
- Hiroshi Maeda
- a Department of Applied Biological Chemistry, The Graduate School of Agriculture , Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Toru Katase
- b Division of Life Science, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,c Amano Enzyme Inc , Nagoya , Japan
| | - Daisuke Sakai
- a Department of Applied Biological Chemistry, The Graduate School of Agriculture , Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Michio Takeuchi
- a Department of Applied Biological Chemistry, The Graduate School of Agriculture , Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | | | | | - Hiroki Ishida
- e Gekkeikan Sake Co., Ltd , Fushimi-ku, Kyoto , Japan
| | - Keietsu Abe
- b Division of Life Science, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Youhei Yamagata
- a Department of Applied Biological Chemistry, The Graduate School of Agriculture , Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
20
|
Mizutani O, Shiina M, Yoshimi A, Sano M, Watanabe T, Yamagata Y, Nakajima T, Gomi K, Abe K. Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae. Biosci Biotechnol Biochem 2016; 80:1781-91. [PMID: 26980104 DOI: 10.1080/09168451.2016.1158632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes β-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the β-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of β-1,3-glucan polymerization.
Collapse
Affiliation(s)
- Osamu Mizutani
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Department of Application Research , National Research Institute of Brewing , Higashi-Hiroshima , Japan
| | - Matsuko Shiina
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Akira Yoshimi
- c ABE-Project , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| | - Motoaki Sano
- d Department of Genome Biotechnology , Kanazawa Institute of Technology , Hakusan , Japan
| | - Takeshi Watanabe
- e Department of Applied Biological Chemistry, Faculty of Agriculture , Niigata University , Niigata , Japan
| | - Youhei Yamagata
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Tasuku Nakajima
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- f Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Keietsu Abe
- c ABE-Project , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan.,g Applied Microbiology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
21
|
Yoshimi A, Umemura M, Nagano N, Koike H, Machida M, Abe K. Expression of ustR and the Golgi protease KexB are required for ustiloxin B biosynthesis in Aspergillus oryzae. AMB Express 2016; 6:9. [PMID: 26842395 PMCID: PMC4740483 DOI: 10.1186/s13568-016-0181-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
Ustiloxin B, originally isolated from the fungus Ustilaginoidea virens, is a known inhibitor of microtubule assembly. Ustiloxin B is also produced by Aspergillus flavus and is synthesized through the ribosomal peptide synthesis pathway. In A. flavus, the gene cluster associated with ustiloxin B production contains 15 genes including those encoding a fungal C6-type transcription factor and ustiloxin B precursor. Although the koji mold Aspergillus oryzae, which is genetically close to A. flavus, has the corresponding gene cluster, it does not produce ustiloxin B, which may be explained by the fact that the gene encoding the transcription factor UstR is not expressed. Here, to investigate whether ustiloxin B can be produced by expressing ustR in A. oryzae, we constructed ustR expression (ustR (EX)) strains and analyzed ustiloxin B production. In the ustR (EX) strains, all genes in the cluster were up-regulated, in line with expression of ustR, and ustiloxin B produced. To elucidate whether the KexB protease is involved in the processing of the ustiloxin B precursor protein UstA, which has repeats of basic amino acid doublets resembling KexB target sites, we also constructed a ustR (EX) strain with the ∆kexB genotype. Although ustR was expressed in this strain, ustiloxin B was barely detectable. This finding strongly suggests that KexB is required for ustiloxin B production.
Collapse
Affiliation(s)
- Akira Yoshimi
- />ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 Japan
| | - Myco Umemura
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 17-2-1 Higashi-Nijo, Tsukisamu, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan
| | - Nozomi Nagano
- />Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064 Japan
| | - Hideaki Koike
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
| | - Masayuki Machida
- />Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 17-2-1 Higashi-Nijo, Tsukisamu, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan
| | - Keietsu Abe
- />ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 Japan
- />Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Sendai, Miyagi 981-8555 Japan
| |
Collapse
|
22
|
Wang J, Zhou H, Lu H, Du T, Luo Y, Wilson IBH, Jin C. Kexin-like endoprotease KexB is required for N-glycan processing, morphogenesis and virulence in Aspergillus fumigatus. Fungal Genet Biol 2015; 76:57-69. [PMID: 25687931 DOI: 10.1016/j.fgb.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
Kexin-like proteins belong to the subtilisin-like family of the proteinases that cleave secretory proproteins to their active forms. Several fungal kexin-like proteins have been investigated. The mutants lacking of kexin-like protein display strong phenotypes such as cell wall defect, abnormal polarity, and, in case of Candida albicans, diminished virulence. However, only several proteins have been confirmed as the substrates of kexin-like proteases in these fungal species. It still remains unclear how kexin-like proteins contribute to the morphogenesis in these fungal species. In this study, a kexB-null mutant of the human opportunistic fungal pathogen Aspergillus fumigatus was constructed and analyzed. The ΔkexB mutant showed retarded growth, temperature-sensitive cell wall defect, reduced conidia formation, and abnormal polarity. Biochemical analyses revealed that deletion of the kexB gene resulted in impaired N-glycan processing, activation of the MpkA-dependent cell wall integrity signaling pathway, and ER-stress. Results from in vivo assays demonstrated that the mutant exhibited an attenuated virulence in immunecompromised mice. Based on our results, the kexin-like endoprotease KexB was involved in the N-glycan processing, which provides a novel insight to understand how kexin-like protein affects the cell-wall modifying enzymes and therefore morphogenesis in fungi.
Collapse
Affiliation(s)
- Jingyang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Katayama T, Uchida H, Ohta A, Horiuchi H. Involvement of protein kinase C in the suppression of apoptosis and in polarity establishment in Aspergillus nidulans under conditions of heat stress. PLoS One 2012; 7:e50503. [PMID: 23209763 PMCID: PMC3509046 DOI: 10.1371/journal.pone.0050503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
The pkcA gene, which encodes a protein kinase C (PKC) in the filamentous fungus Aspergillus nidulans, is essential for its viability. However, little is known about its functions. To address this issue, we constructed and characterized temperature-sensitive mutants of pkcA. The conidia of these mutants swelled slightly and exhibited apoptotic phenotypes at 42°C. The apoptotic phenotypes were suppressed by an osmotic stabilizer. Under these conditions, the conidia swelled extensively and did not form germ tubes. Moreover, polarized distribution of F-actin was not observed. We then utilized deletion mutants of bckA, an ortholog of Saccharomyces cerevisiae bck1 that encodes a mitogen-activated protein (MAP) kinase kinase kinase and functions downstream of PKC in the cell wall integrity pathway. These mutants exhibited apoptotic phenotypes at 42°C, but they did not show defects in polarity establishment under osmotically stabilized conditions. These results suggest that PkcA plays multiple roles during germination under conditions of heat stress. The first of these roles is the suppression of apoptosis induction, while the other involves polarity establishment. The former depends on the MAP kinase cascade, whereas the latter does not. In addition, repolarization, which was observed after depolarization in the wild-type strain and the bckA deletion mutant under conditions of heat stress, was not observed in the pkcA-ts mutant. This suggests that PkcA also plays role in polarity establishment during hyphal growth independent of the MAP kinase cascade under these conditions.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Uchida
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
24
|
Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 2012; 78:4126-33. [PMID: 22504800 DOI: 10.1128/aem.00080-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Marker rescue is an important molecular technique that enables sequential gene deletions. The Cre-loxP recombination system has been used for marker gene rescue in various organisms, including aspergilli. However, this system requires many time-consuming steps, including construction of a Cre expression plasmid, introduction of the plasmid, and Cre expression in the transformant. To circumvent this laborious process, we investigated a method wherein Cre could be directly introduced into Aspergillus oryzae protoplasts on carrier DNA such as a fragment or plasmid. In this study, we define the carrier DNA (Cre carrier) as a carrier for the Cre enzyme. A mixture of commercial Cre and nucleic acids (e.g., pUG6 plasmid) was introduced into A. oryzae protoplasts using a modified protoplast-polyethylene glycol method, resulting in the deletion of a selectable marker gene flanked by loxP sites. By using this method, we readily constructed a marker gene-rescued strain lacking ligD to optimize homologous recombination. Furthermore, we succeeded in integrative recombination at a loxP site in A. oryzae. Thus, we developed a simple method to use the Cre-loxP recombination system in A. oryzae by direct introduction of Cre into protoplasts using DNA as a carrier for the enzyme.
Collapse
|
25
|
Jacob-Wilk D, Moretti M, Turina M, Kazmierczak P, Van Alfen NK. Differential expression of the putative Kex2 processed and secreted aspartic proteinase gene family of Cryphonectria parasitica. Fungal Biol 2012; 116:363-78. [DOI: 10.1016/j.funbio.2011.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/12/2023]
|
26
|
te Biesebeke R, Levasseur A, Boussier A, Record E, van den Hondel CAMJJ, Punt PJ. Phylogeny of fungal hemoglobins and expression analysis of the Aspergillus oryzae flavohemoglobin gene fhbA during hyphal growth. Fungal Biol 2011; 114:135-43. [PMID: 20960969 DOI: 10.1016/j.mycres.2009.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fhbA genes encoding putative flavohemoglobins (FHb) from Aspergillus niger and Aspergillus oryzae were isolated. Comparison of the deduced amino acid sequence of the A. niger fhbA gene and other putative filamentous fungal FHb-encoding genes to that of Ralstonia eutropha shows an overall conserved gene structure and completely conserved catalytic amino acids. Several yeasts and filamentous fungi, including both Aspergillus species have been found to contain a small FHb gene family mostly consisting of two family members. Based on these sequences the evolutionary history of the fungal FHb family was reconstructed. The isolated fhbA genes from A. oryzae and A. niger belong to a phylogenetic group, which exclusively contains Aspergillus genes. Different experimental approaches show that fhbA transcript levels appear during active hyphal growth. Moreover, in a pclA-disrupted strain with a hyperbranching growth phenotype, the transcript levels of the fhbA gene were 2–5 times higher compared to the wild-type. These results suggest that FHb from filamentous fungi have a function that is correlated to the hyphal growth phenotype.
Collapse
Affiliation(s)
- Rob te Biesebeke
- Top Institute Food & Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol Microbiol 2009; 73:553-70. [PMID: 19602150 DOI: 10.1111/j.1365-2958.2009.06786.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea. alpha-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and beta-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were alpha-1,3-glucan and chitosan, but after enzymatic digestion of alpha-1,3-glucan, beta-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed alpha-1,3-glucan and beta-1,3-glucan intermixed in the cell wall of infectious hyphae; however, alpha-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of alpha-1,3-glucan. Accumulation of alpha-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, alpha-1,3-glucan spatially and functionally masks beta-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea.
Collapse
Affiliation(s)
- Takashi Fujikawa
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe H, Hatakeyama M, Sakurai H, Uchimiya H, Sato T. Isolation of industrial strains of Aspergillus oryzae lacking ferrichrysin by disruption of the dffA gene. J Biosci Bioeng 2009; 106:488-92. [PMID: 19111645 DOI: 10.1263/jbb.106.488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.
Collapse
Affiliation(s)
- Hisayuki Watanabe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, Japan
| | | | | | | | | |
Collapse
|
29
|
Wiederhold NP. Paradoxical echinocandin activity: a limited in vitro phenomenon? Med Mycol 2009; 47 Suppl 1:S369-75. [PMID: 19255904 DOI: 10.1080/13693780802428542] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The echinocandins have been a welcome addition for the treatment of invasive fungal infections. Despite their excellent safety profile and clinical efficacy, concerns exist regarding an attenuation of activity at higher concentrations, known as the paradoxical effect. In vitro studies have reported this phenomenon against both Candida and Aspergillus species. Recent data have also demonstrated this effect to be species-related and echinocandin specific. Although not completely understood, studies have pointed towards involvement of the protein kinase C cell wall integrity pathway as well as increases in cell wall chitin content as potential mechanisms responsible for this phenomenon. Increases in galactomannan have been reported in vitro and in vivo following echinocandin exposure. Although some in vivo studies of invasive aspergillosis have also reported a paradoxical increase in other markers of invasive disease and fungal burden with echinocandin therapy, these observations are inconsistent. The paradoxical effect has also not been demonstrated clinically. Thus, the clinical implications of the paradoxical attenuation of echinocandin activity at elevated concentrations remain unknown. A complete understanding of this effect may further our knowledge of fungal responses to echinocandin cell wall damage and potentially improve treatment strategies.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- University of Texas at Austin College of Pharmacy, Austin, Texas 78229, USA.
| |
Collapse
|
30
|
Jacob-Wilk D, Turina M, Kazmierczak P, Van Alfen NK. Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:211-221. [PMID: 19132873 DOI: 10.1094/mpmi-22-2-0211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cryphonectria parasitica is the causal agent of chestnut blight. Infection of this ascomycete with Cryphonectria hypovirus 1 (CHV1) results in reduction of virulence and sporulation of the fungus. The virus affects fungal gene expression and several of the CHV1 downregulated genes encode secreted proteins that contain consensus Kex2 processing signals. Additionally, CHV1 has been shown to colocalize in infected cells primarily with fungal trans-Golgi network vesicles containing the Kex2 protease. We report here the cloning, analysis, and possible role of the C. parasitica Kex2 gene (CpKex2). CpKex2 gene sequence analysis showed high similarity to other ascomycete kexin-like proteins. Southern blot analyses of CpKex2 showed a single copy of this gene in the fungal genome. In order to monitor the expression and evaluate the function of CpKex2, antibodies were raised against expressed protein and Kex2-silenced mutants were generated. Western blots indicate that the Kex2 protein was constitutively expressed. Growth rate of the fungus was not significantly affected in Kex2-silenced strains; however, these strains showed reduced virulence, reduced sexual and asexual sporulation, and reductions in mating and fertility. The reduced virulence was correlated with reduced Kex2 enzymatic activity and reduced relative mRNA transcript levels as measured by real time reverse-transcriptase polymerase chain reaction. These results suggest that secreted proteins processed by Kex2 are important in fungal development and virulence.
Collapse
Affiliation(s)
- Debora Jacob-Wilk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
31
|
Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl Environ Microbiol 2008; 74:6538-46. [PMID: 18791013 DOI: 10.1128/aem.01354-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We investigated the effect of codon optimization on the expression levels of heterologous proteins in Aspergillus oryzae, using the mite allergen Der f 7 as a model protein. A codon-optimized Der f 7 gene was synthesized according to the frequency of codon usage in A. oryzae by recursive PCR. Both native and optimized Der f 7 genes were expressed under the control of a high-level-expression promoter with their own signal peptides or in a fusion construct with A. oryzae glucoamylase (GlaA). Codon optimization markedly increased protein and mRNA production levels in both nonfused and GlaA-fused Der f 7 constructs. For constructs with native codons, analysis by 3' rapid amplification of cDNA ends revealed that poly(A) tracts tended to be added within the coding region, producing aberrant mRNAs that lack a termination codon. Insertion of a termination codon between the carrier GlaA and native Der f 7 proteins in the GlaA fusion construct resulted in increases in mRNA and secreted-carrier-GlaA levels. These results suggested that mRNAs without a termination codon as a result of premature polyadenylation are degraded, possibly through the nonstop mRNA decay pathway. We suggest that codon optimization in A. oryzae results in elimination of cryptic polyadenylation signals in native Der f 7, thereby circumventing the production of truncated transcripts and resulting in an increase in steady-state mRNA levels.
Collapse
|
32
|
Bader O, Krauke Y, Hube B. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 2008; 8:116. [PMID: 18625069 PMCID: PMC2515848 DOI: 10.1186/1471-2180-8-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the alpha-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. RESULTS In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. CONCLUSION Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.
Collapse
Affiliation(s)
- Oliver Bader
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Institut für Medizinische Mikrobiologie, Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Yannick Krauke
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Dept. Membrane Transport, Institute of Physiology AS CR v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Bernhard Hube
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Department of Microbial Pathogenicity, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, and Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
33
|
Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae. Appl Microbiol Biotechnol 2008; 79:1009-18. [DOI: 10.1007/s00253-008-1502-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/09/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
|
34
|
Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K. A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 2008; 45:878-89. [DOI: 10.1016/j.fgb.2007.12.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/18/2007] [Accepted: 12/27/2007] [Indexed: 01/12/2023]
|
35
|
Wiederhold NP. Attenuation of echinocandin activity at elevated concentrations: a review of the paradoxical effect. Curr Opin Infect Dis 2008; 20:574-8. [PMID: 17975406 DOI: 10.1097/qco.0b013e3282f1be7f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The echinocandins have been a welcome addition for the treatment of invasive fungal infections caused by Candida and Aspergillus species. Despite their excellent safety profile and clinical efficacy, concerns exist regarding an attenuation of activity at higher concentrations, known as the paradoxical effect. This article will review the literature describing this effect, the potential mechanisms responsible for it, and the clinical implications of this phenomenon. RECENT FINDINGS In-vitro studies have reported a paradoxical effect at higher concentrations against both Candida and Aspergillus species. Recent data have demonstrated this effect in Candida to be species related and echinocandin specific. Although not completely understood, studies have pointed towards involvement of the protein kinase C cell wall integrity and calcineurin pathways as well as increases in cell wall chitin content as potential mechanisms behind the effect. Although some in-vivo studies with echinocandins have reported a paradoxical increase in markers of invasive disease, clinical data are scarce. SUMMARY The clinical implications of the paradoxical attenuation of echinocandin activity observed in vitro and in vivo remain unknown. A complete understanding of this effect may further our knowledge of fungal responses to echinocandin cell wall damage and potentially improve treatment strategies.
Collapse
|
36
|
Meyer V, Damveld RA, Arentshorst M, Stahl U, van den Hondel CAMJJ, Ram AFJ. Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of caspofungin and fenpropimorph. J Biol Chem 2007; 282:32935-48. [PMID: 17804411 DOI: 10.1074/jbc.m705856200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How yeast cells respond to cell wall stress is relatively well understood; however, how filamentous fungi cope with cell wall damage is largely unexplored. Here we report the first transcriptome analysis of Aspergillus niger exposed to the antifungal compounds caspofungin, an inhibitor of beta-1,3-glucan synthesis, and fenpropimorph, which inhibits ergosterol synthesis. The presence of sublethal drug concentrations allowed A. niger to adapt to the stress conditions and to continue growth by the establishment of new polarity axes and formation of new germ tubes. By comparing the expression profile between caspofungin-exposed and nonexposed A. niger germlings, we identified a total of 172 responsive genes out of 14,509 open reading frames present on the Affymetrix microarray chips. Among 165 up-regulated genes, mainly genes predicted to function in (i) cell wall assembly and remodeling, (ii) cytoskeletal organization, (iii) signaling, and (iv) oxidative stress response were affected. Fenpropimorph modulated expression of 43 genes, of which 41 showed enhanced expression. Here, genes predicted to function in (i) membrane reconstruction, (ii) lipid signaling, (iii) cell wall remodeling, and (iv) oxidative stress response were identified. Northern analyses of selected genes were used to confirm the microarray analyses. The results further show that expression of the agsA gene encoding an alpha-1,3-glucan synthase is up-regulated by both compounds. Using two PagsA-GFP reporter strains of A. niger and subjecting them to 16 different antifungal compounds, including caspofungin and fenpropimorph, we could show that agsA is specifically activated by compounds interfering directly or indirectly with cell wall biosynthesis.
Collapse
Affiliation(s)
- Vera Meyer
- Department of Microbiology and Genetics, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K. MpkA-Dependent and -independent cell wall integrity signaling in Aspergillus nidulans. EUKARYOTIC CELL 2007; 6:1497-510. [PMID: 17601879 PMCID: PMC1951132 DOI: 10.1128/ec.00281-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell wall integrity signaling (CWIS) maintains cell wall biogenesis in fungi, but only a few transcription factors (TFs) and target genes downstream of the CWIS cascade in filamentous fungi are known. Because a mitogen-activated protein kinase (MpkA) is a key CWIS enzyme, the transcriptional regulation of mpkA and of cell wall-related genes (CWGs) is important in cell wall biogenesis. We cloned Aspergillus nidulans mpkA; rlmA, a TF gene orthologous to Saccharomyces cerevisiae RLM1 that encodes Rlm1p, a major Mpk1p-dependent TF that regulates the transcription of MPK1 besides that of CWGs; and Answi4 and Answi6, homologous to S. cerevisiae SWI4 and SWI6, encoding the Mpk1p-activating TF complex Swi4p-Swi6p, which regulates CWG transcription in a cell cycle-dependent manner. A. nidulans rlmA and mpkA cDNA functionally complemented S. cerevisiae rlm1Delta and mpk1Delta mutants, respectively, but Answi4 and Answi6 cDNA did not complement swi4Delta and swi6Delta mutants. We constructed A. nidulans rlmA, Answi4 and Answi6, and mpkA disruptants (rlmADelta, Answi4Delta Answi6Delta, and mpkADelta strains) and analyzed mpkA and CWG transcripts after treatment with a beta-1,3-glucan synthase inhibitor (micafungin) that could activate MpkA via CWIS. Levels of mpkA transcripts in the mutants as well as those in the wild type were changed after micafungin treatment. The beta-glucuronidase reporter gene controlled by the mpkA promoter was expressed in the wild type but not in the mpkADelta strain. Thus, mpkA transcription seems to be autoregulated by CWIS via MpkA but not by RlmA or AnSwi4-AnSwi6. The transcription of most CWGs except alpha-1,3-glucan synthase genes (agsA and agsB) was independent of RlmA and AnSwi4-AnSwi6 and seemed to be regulated by non-MpkA signaling. The transcriptional regulation of mpkA and of CWGs via CWIS in A. nidulans differs significantly from that in S. cerevisiae.
Collapse
Affiliation(s)
- Tomonori Fujioka
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohashi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, Kurihara Y, Maruyama JI, Juvvadi PR, Tanaka A, Hata Y, Koyama Y, Yamaguchi S, Kitamoto N, Gomi K, Abe K, Takeuchi M, Kobayashi T, Horiuchi H, Kitamoto K, Kashiwagi Y, Machida M, Akita O. Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 2007; 14:47-57. [PMID: 17540709 PMCID: PMC2779895 DOI: 10.1093/dnares/dsm008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We performed random sequencing of cDNAs from nine biologically or industrially important cultures of the industrially valuable fungus Aspergillus oryzae to obtain expressed sequence tags (ESTs). Consequently, 21 446 raw ESTs were accumulated and subsequently assembled to 7589 non-redundant consensus sequences (contigs). Among all contigs, 5491 (72.4%) were derived from only a particular culture. These included 4735 (62.4%) singletons, i.e. lone ESTs overlapping with no others. These data showed that consideration of culture grown under various conditions as cDNA sources enabled efficient collection of ESTs. BLAST searches against the public databases showed that 2953 (38.9%) of the EST contigs showed significant similarities to deposited sequences with known functions, 793 (10.5%) were similar to hypothetical proteins, and the remaining 3843 (50.6%) showed no significant similarity to sequences in the databases. Culture-specific contigs were extracted on the basis of the EST frequency normalized by the total number for each culture condition. In addition, contig sequences were compared with sequence sets in eukaryotic orthologous groups (KOGs), and classified into the KOG functional categories.
Collapse
Affiliation(s)
- Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morita H, Hatamoto O, Masuda T, Sato T, Takeuchi M. Function analysis of steA homolog in Aspergillus oryzae. Fungal Genet Biol 2007; 44:330-8. [PMID: 17178246 DOI: 10.1016/j.fgb.2006.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 10/27/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
The asexual ascomycete Aspergillus oryzae has an steA homolog in its genome. The steA homolog of A. oryzae was transcribed in the wild-type strain but steA disruption did not affect the phenotype of the disruptant strain. On the other hand, the steA-overexpressing strain showed the restriction of vegetative hyphal growth and conidiation, and the formation of balloon-shaped structures. The restriction of vegetative hyphal growth and conidiation were partially rescued by high osmolarity. In addition, the hyphal growth of the steA-overexpressing strain was inhibited by Calcofluor white, and the strain was found to be sensitive to cell-wall-degrading reagents. Increase of secretory cell-wall-degrading enzymes of the steA-overexpressing strain was detected. These results indicate that SteA regulates cell-wall-degrading enzymes and that the phenotypes of A. oryzae steA-overexpressing strain may be due to cell wall abnormalities. steA may participate in cell wall metabolism.
Collapse
Affiliation(s)
- Hiroto Morita
- Department of Agriscience and Bioscience, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
40
|
Rui O, Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. MOLECULAR PLANT PATHOLOGY 2007; 8:173-84. [PMID: 20507489 DOI: 10.1111/j.1364-3703.2007.00383.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Mitogen-activated protein kinases (MAPKs) play important roles in signal transduction and regulation of various aspects of saprotrophic and pathogenic growth in plant pathogenic fungi. We have generated a Botrytis cinerea knock-out mutant in the bmp3 gene encoding a homologue of the yeast Slt2 cell wall integrity MAPK. The Deltabmp3 mutant showed reduced vegetative growth on various media, strongly impaired conidiation and loss of sclerotia formation. Growth retardation of the mutant was enhanced in media with low osmolarity, whereas nearly wild-type growth rates were observed under high osmolarity conditions. The Deltabmp3 mutant did not show increased susceptibility to cell wall damage induced by glucanase, Calcofluor White or Nikkomycin Z, but was more susceptible to the oxidizing agent paraquat and the phenylpyrrole fungicide fludioxonil. Deltabmp3 conidia showed normal germination and germ tube growth on agar, but excessive germ tube elongation on hard surfaces and reduced penetration efficiency, indicating a defect in surface sensing. After penetration, development of necrotic lesions induced by the Deltabmp3 mutant was retarded. All these defects were restored by genetic complementation of the mutant with the wild-type bmp3 gene.
Collapse
Affiliation(s)
- Oliver Rui
- University of Kaiserslautern, Department of Biology, PO Box 3049, 67653 Kaiserslautern, Germany
| | | |
Collapse
|
41
|
Kim Y, Nandakumar MP, Marten MR. Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol 2007; 44:886-95. [PMID: 17258477 DOI: 10.1016/j.fgb.2006.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/29/2006] [Accepted: 12/03/2006] [Indexed: 02/02/2023]
Abstract
The model filamentous fungus Aspergillus nidulans, when grown in a moderate level of osmolyte (+0.6M KCl), was previously found to have a significantly reduced cell wall elasticity (Biotech Prog, 21:292, 2005). In this study, comparative proteomic analysis via two-dimensional gel electrophoresis (2de) and matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry was used to assess molecular level events associated with this phenomenon. Thirty of 90 differentially expressed proteins were identified. Sequence homology and conserved domains were used to assign probable function to twenty-one proteins currently annotated as "hypothetical." In osmoadapted cells, there was an increased expression of glyceraldehyde-3-phosphate dehydrogenase and aldehyde dehydrogenase, as well as a decreased expression of enolase, suggesting an increased glycerol biosynthesis and decreased use of the TCA cycle. There also was an increased expression of heat shock proteins and Shp1-like protein degradation protein, implicating increased protein turnover. Five novel osmoadaptation proteins of unknown functions were also identified.
Collapse
Affiliation(s)
- Yonghyun Kim
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
42
|
Masai K, Maruyama JI, Sakamoto K, Nakajima H, Akita O, Kitamoto K. Square-plate culture method allows detection of differential gene expression and screening of novel, region-specific genes in Aspergillus oryzae. Appl Microbiol Biotechnol 2006; 71:881-91. [PMID: 16708193 DOI: 10.1007/s00253-006-0429-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/08/2006] [Accepted: 03/15/2006] [Indexed: 11/26/2022]
Abstract
When grown on solid agar medium, the mycelium of a filamentous fungus, Aspergillus oryzae, forms three morphologically distinct regions: the tip (T), white (W), and basal (B) regions. In this study, we developed the square-plate culture method, a novel culture method that enabled the extraction of mRNA samples from the three regions and analyzed the differential gene expression of the A. oryzae mycelium in concert with the microarray technique. Expression of genes involved in protein synthesis was predominant in the T region; relative expression was, at most, six times higher in the T region compared to the other regions. Genes encoding hypothetical proteins were expressed at high levels in the W and B regions. In addition, genes coding transporters/permeases were predominantly transcribed in the B region. By analyzing the expression patterns of genes in the three regions, we demonstrated the dynamic changes in the regulation of gene expression that occur along the mycelium of filamentous fungi. Consequently, our study established a method to analyze and screen for region-specific genes whose function may be essential for morphogenesis and differentiation in filamentous fungi and whose traits may be beneficial to the biotechnology industry.
Collapse
Affiliation(s)
- Kumiko Masai
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Damveld RA, Arentshorst M, Franken A, vanKuyk PA, Klis FM, van den Hondel CAMJJ, Ram AFJ. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol 2006; 58:305-19. [PMID: 16164567 DOI: 10.1111/j.1365-2958.2005.04827.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Aspergillus niger, the genes coding for glutamine:fructose-6-phosphate amidotransferase (gfaA) and alpha-1,3-glucan synthase (agsA) are induced in response to cell wall stress. In silico analysis of the promoter region of the two genes revealed the presence of putative DNA binding sites for transcription factors involved in stress responses, including sites identical to the Saccharomyces cerevisiae Rlm1p and Msn2p/Msn4p transcription factors. Promoter analysis indicated that the induction of the agsA gene in response to cell wall stress is fully dependent on a putative Rlm1p binding site in its promoter region. Database searches revealed the presence of S. cerevisiae Rlm1p homologues in most filamentous fungi examined, including A. niger. Deletion of the RLM1 homologue, named rlmA in A. niger, completely eliminated the induction of agsA and resulted in a twofold reduced induction of gfaA during Calcofluor White-induced cell wall stress. The rise in cell wall chitin in the presence of Calcofluor White was also affected in the rlmA deletion strain. In addition, the deletion strain was more sensitive towards cell wall stress agents. Our results indicate that A. niger responds to cell wall stress by transcriptional activation of cell wall reinforcing genes including agsA and gfaA through an Rlm1p-like transcription factor. We propose that such a cell wall salvage mechanism is wide spread in filamentous fungi.
Collapse
Affiliation(s)
- Robbert A Damveld
- Institute of Biology, Leiden University, Clusius Laboratory, Fungal Genetics Research Group, Wassenaarseweg 64, 2333 AL, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl Environ Microbiol 2006; 72:2407-13. [PMID: 16597938 PMCID: PMC1449009 DOI: 10.1128/aem.72.4.2407-2413.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/19/2006] [Indexed: 01/28/2023] Open
Abstract
Hydrophobic surface binding protein A (HsbA) is a secreted protein (14.5 kDa) isolated from the culture broth of Aspergillus oryzae RIB40 grown in a medium containing polybutylene succinate-co-adipate (PBSA) as a sole carbon source. We purified HsbA from the culture broth and determined its N-terminal amino acid sequence. We found a DNA sequence encoding a protein whose N terminus matched that of purified HsbA in the A. ozyzae genomic sequence. We cloned the hsbA genomic DNA and cDNA from A. oryzae and constructed a recombinant A. oryzae strain highly expressing hsbA. Orthologues of HsbA were present in animal pathogenic and entomopathogenic fungi. Heterologously synthesized HsbA was purified and biochemically characterized. Although the HsbA amino acid sequence suggests that HsbA may be hydrophilic, HsbA adsorbed to hydrophobic PBSA surfaces in the presence of NaCl or CaCl(2). When HsbA was adsorbed on the hydrophobic PBSA surfaces, it promoted PBSA degradation via the CutL1 polyesterase. CutL1 interacts directly with HsbA attached to the hydrophobic QCM electrode surface. These results suggest that when HsbA is adsorbed onto the PBSA surface, it recruits CutL1, and that when CutL1 is accumulated on the PBSA surface, it stimulates PBSA degradation. We previously reported that when the A. oryzae hydrophobin RolA is bound to PBSA surfaces, it too specifically recruits CutL1. Since HsbA is not a hydrophobin, A. oryzae may use several types of proteins to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation.
Collapse
Affiliation(s)
- Shinsaku Ohtaki
- Laboratory of Molecular Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Aobaku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Takahashi T, Maeda H, Yoneda S, Ohtaki S, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K. The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol 2005; 57:1780-96. [PMID: 16135240 DOI: 10.1111/j.1365-2958.2005.04803.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When fungi grow on plant or insect surfaces coated with wax polyesters that protect against pathogens, the fungi generally form aerial hyphae to contact the surfaces. Aerial structures such as hyphae and conidiophores are coated with hydrophobins, which are surface-active proteins involved in adhesion to hydrophobic surfaces. When the industrial fungus Aspergillus oryzae was cultivated in a liquid medium containing the biodegradable polyester polybutylene succinate-coadipate (PBSA), the rolA gene encoding hydrophobin RolA was highly transcribed. High levels of RolA and its localization on the cell surface in the presence of PBSA were confirmed by immunostaining. Under these conditions, A. oryzae simultaneously produced the cutinase CutL1, which hydrolyses PBSA. Pre-incubation of PBSA with RolA stimulated PBSA degradation by CutL1, suggesting that RolA bound to the PBSA surface was required for the stimulation. Immunostaining revealed that PBSA films coated with RolA specifically adsorbed CutL1. Quartz crystal microbalance analyses further demonstrated that RolA attached to a hydrophobic sensor chip specifically adsorbed CutL1. Circular dichroism spectra of soluble-state RolA and bound RolA suggested that RolA underwent a conformational change after its adsorption to hydrophobic surfaces. These results suggest that RolA adsorbed to the hydrophobic surface of PBSA recruits CutL1, resulting in condensation of CutL1 on the PBSA surface and consequent stimulation of PBSA hydrolysis. A fluorescence recovery after photobleaching experiment on PBSA films coated with FITC-labelled RolA suggested that RolA moves laterally on the film. We discuss the novel molecular functions of RolA with regard to plastic degradation.
Collapse
Affiliation(s)
- Toru Takahashi
- Laboratory of Enzymology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai 985-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ichinomiya M, Ohta A, Horiuchi H. Expression of asexual developmental regulator gene abaA is affected in the double mutants of classes I and II chitin synthase genes, chsC and chsA, of Aspergillus nidulans. Curr Genet 2005; 48:171-83. [PMID: 16082523 DOI: 10.1007/s00294-005-0004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/31/2005] [Accepted: 06/06/2005] [Indexed: 11/26/2022]
Abstract
The chsA and chsC encode classes II and I chitin synthases, respectively, of the filamentous fungus Aspergillus nidulans. The DeltachsA DeltachsC double mutants (DeltaAC mutants) show defects in asexual development: a striking reduction in the number of conidiophores and aberrant conidiophore morphology. Here, we examined the involvement of regulatory genes for asexual development (brlA, abaA, and medA) in the conidiation defects of the DeltaAC mutants. Spatial expression patterns of brlA, abaA, and medA in conidiophores of the wild-type strains and DeltaAC mutants were examined by in-situ staining using a reporter gene; expression of either gene was detected at abnormal sterigmata in the DeltaAC mutants as well as at normal ones in the wild-type strain. However, abaA expression was not prominent at a subset of conidiophores developing long chains of aberrant sterigmata, suggesting that induction of the abaA expression was retarded in the DeltaAC mutants. Based on these results and those previously presented, possible mechanisms involved in the conidiation defects are discussed.
Collapse
Affiliation(s)
- Masayuki Ichinomiya
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | |
Collapse
|
47
|
Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 2005; 56:1246-61. [PMID: 15882418 DOI: 10.1111/j.1365-2958.2005.04605.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
48
|
te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CAMJJ. Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 2005; 69:44-50. [PMID: 15909137 DOI: 10.1007/s00253-005-1968-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/18/2005] [Accepted: 03/20/2005] [Indexed: 11/30/2022]
Abstract
To study the relation between the number of hyphal tips and protein secretion during growth on a solid substrate, we have constructed two mutant strains of Aspergillus oryzae with increased hyphal branching. We have analysed hydrolytic enzyme activities during growth on wheat kernels (WK) of A. oryzae strains carrying the disrupted allele of the pclA gene encoding a secretion pathway specific (KEX2-like) endo-protease and the disrupted allele of the pg/pi-tp gene encoding a phosphatidylglycerol/phosphatidylinositol transfer protein. The biomass levels produced by the pclA and pg/pi-tp disrupted strains on wheat-based solid media were similar as found for the wild-type strain. However, the pclA disrupted strain showed much more compact colony morphology than the other two strains. Sporulation of the pclA and pg/pi-tp disrupted strains occurred, respectively, 2 days and 1 day later, compared to the wild type during fermentation on ground WK. During surface growth, microscopic analysis revealed that the hyphal growth unit length (L (hgu)) of the pclA and pg/pi-tp disrupted strains was, on average, 50 and 74% of that of the wild-type strain. This implies that in both mutant strains, a higher branching frequency occurs than in the wild-type strain. Compared to the wild-type strain, the pclA and pg/pi-tp disrupted strains produced at least 50% more amylase, at least 100% more glucoamylase and at least 90% more protease activity levels after growth on WK. These results support the hypothesis that branching mutants with an increased branching frequency can improve the solid state fermentation process.
Collapse
Affiliation(s)
- R te Biesebeke
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|