1
|
Extension of O-Linked Mannosylation in the Golgi Apparatus Is Critical for Cell Wall Integrity Signaling and Interaction with Host Cells in Cryptococcus neoformans Pathogenesis. mBio 2022; 13:e0211222. [PMID: 36409123 PMCID: PMC9765558 DOI: 10.1128/mbio.02112-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human-pathogenic yeast Cryptococcus neoformans assembles two types of O-linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans CAP6 gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor O-glycans containing xylose in the Golgi apparatus. Two cell surface sensor proteins, Wml1 (WSC/Mid2-like) and Wml2, were found to be independent substrates of Cap6-mediated minor or Ktr3-mediated major O-mannosylation, respectively. The double deletion of KTR3 and CAP6 (ktr3Δ cap6Δ) completely blocked the mannose addition at the second position of O-glycans, resulting in the accumulation of proteins with O-glycans carrying only a single mannose. Tunicamycin (TM)-induced phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) was greatly decreased in both ktr3Δ cap6Δ and wml1Δ wml2Δ strains. Transcriptome profiling of the ktr3Δ cap6Δ strain upon TM treatment revealed decreased expression of genes involved in the Mpk1-dependent cell wall integrity (CWI) pathway. Consistent with its defective growth under several stress conditions, the ktr3Δ cap6Δ strain was avirulent in a mouse model of cryptococcosis. Associated with this virulence defect, the ktr3Δ cap6Δ strain showed decreased adhesion to lung epithelial cells, decreased proliferation within macrophages, and reduced transcytosis of the blood-brain barrier (BBB). Notably, the ktr3Δ cap6Δ strain showed reduced induction of the host immune response and defective trafficking of ergosterol, an immunoreactive fungal molecule. In conclusion, O-glycan extension in the Golgi apparatus plays critical roles in various pathobiological processes, such as CWI signaling and stress resistance and interaction with host cells in C. neoformans. IMPORTANCE Cryptococcus neoformans assembles two types of O-linked glycans on its surface proteins, the more abundant major O-glycans that do not contain xylose residues and minor O-glycans containing xylose. Here, we demonstrate the role of the Cap6 α1,3-mannosyltransferase in the synthesis of minor O-glycans. Previously proposed to be involved in capsule biosynthesis, Cap6 works with the related Ktr3 α1,2-mannosyltransferase to synthesize O-glycans on their target proteins. We also identified two novel C. neoformans stress sensors that require Ktr3- and Cap6-mediated posttranslational modification for full function. Accordingly, the ktr3Δ cap6Δ double O-glycan mutant strain displays defects in stress signaling pathways, CWI, and ergosterol trafficking. Furthermore, the ktr3Δ cap6Δ strain is completely avirulent in a mouse infection model. Together, these results demonstrate critical roles for O-glycosylation in fungal pathogenesis. As there are no human homologs for Cap6 or Ktr3, these fungus-specific mannosyltransferases are novel targets for antifungal therapy.
Collapse
|
2
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
3
|
Castells-Ballester J, Zatorska E, Meurer M, Neubert P, Metschies A, Knop M, Strahl S. Monitoring Protein Dynamics in Protein O-Mannosyltransferase Mutants In Vivo by Tandem Fluorescent Protein Timers. Molecules 2018; 23:E2622. [PMID: 30322079 PMCID: PMC6222916 DOI: 10.3390/molecules23102622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.
Collapse
Affiliation(s)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Patrick Neubert
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Anke Metschies
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
- Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Role of glycosylation in nucleating protein folding and stability. Biochem J 2017; 474:2333-2347. [PMID: 28673927 DOI: 10.1042/bcj20170111] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Glycosylation constitutes one of the most common, ubiquitous and complex forms of post-translational modification. It commences with the synthesis of the protein and plays a significant role in deciding its folded state, oligomerization and thus its function. Recent studies have demonstrated that N-linked glycans help proteins to fold as the stability and folding kinetics are altered with the removal of the glycans from them. Several studies have shown that it alters not only the thermodynamic stability but also the structural features of the folded proteins modulating their interactions and functions. Their inhibition and perturbations have been implicated in diseases from diabetes to degenerative disorders. The intent of this review is to provide insight into the recent advancements in the general understanding on the aspect of glycosylation driven stability of proteins that is imperative to their function and finally their role in health and disease states.
Collapse
|
5
|
Neubert P, Halim A, Zauser M, Essig A, Joshi HJ, Zatorska E, Larsen ISB, Loibl M, Castells-Ballester J, Aebi M, Clausen H, Strahl S. Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae. Mol Cell Proteomics 2016; 15:1323-37. [PMID: 26764011 PMCID: PMC4824858 DOI: 10.1074/mcp.m115.057505] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammals O-mannosylation is the only type of O-glycosylation. In an essential step toward the full understanding of protein O-mannosylation we mapped the O-mannose glycoproteome in baker's yeast. Taking advantage of an O-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500 O-glycoproteins from all subcellular compartments for which over 2300 O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293 O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized protein O-mannosyltransferases. We find that O-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed that O-mannosylation is favored in unstructured regions and β-strands. Furthermore, O-mannosylation is impeded in the proximity of N-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and their O-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types of O-glycosylation from yeast to mammals.
Collapse
Affiliation(s)
- Patrick Neubert
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Adnan Halim
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Martin Zauser
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Andreas Essig
- ¶Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Hiren J Joshi
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ewa Zatorska
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Ida Signe Bohse Larsen
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Martin Loibl
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Joan Castells-Ballester
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | - Markus Aebi
- ¶Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Henrik Clausen
- §Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sabine Strahl
- From the ‡Centre for Organismal Studies (COS), Department of Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany;
| |
Collapse
|
6
|
Kim H, Thak EJ, Lee DJ, Agaphonov MO, Kang HA. Hansenula polymorpha Pmt4p Plays Critical Roles in O-Mannosylation of Surface Membrane Proteins and Participates in Heteromeric Complex Formation. PLoS One 2015; 10:e0129914. [PMID: 26134523 PMCID: PMC4489896 DOI: 10.1371/journal.pone.0129914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
O-mannosylation, the addition of mannose to serine and threonine residues of secretory proteins, is a highly conserved post-translational modification found in organisms ranging from bacteria to humans. Here, we report the functional and molecular characterization of the HpPMT4 gene encoding a protein O-mannosyltransferase in the thermotolerant methylotrophic yeast Hansenula polymorpha, an emerging host for the production of therapeutic recombinant proteins. Compared to the deletion of HpPMT1, deletion of another major PMT gene, HpPMT4, resulted in more increased sensitivity to the antibiotic hygromycin B, caffeine, and osmotic stresses, but did not affect the thermotolerance of H. polymorpha. Notably, the deletion of HpPMT4 generated severe defects in glycosylation of the surface sensor proteins HpWsc1p and HpMid2p, with marginal effects on secreted glycoproteins such as chitinase and HpYps1p lacking a GPI anchor. However, despite the severely impaired mannosylation of surface sensor proteins in the Hppmt4∆ mutant, the phosphorylation of HpMpk1p and HpHog1p still showed a high increase upon treatment with cell wall disturbing agents or high concentrations of salts. The conditional Hppmt1pmt4∆ double mutant strains displayed severely impaired growth, enlarged cell size, and aberrant cell separation, implying that the loss of HpPMT4 function might be lethal to cells in the absence of HpPmt1p. Moreover, the HpPmt4 protein was found to form not only a homomeric complex but also a heteromeric complex with either HpPmt1p or HpPmt2p. Altogether, our results support the function of HpPmt4p as a key player in O-mannosylation of cell surface proteins and its participation in the formation of heterodimers with other PMT members, besides homodimer formation, in H. polymorpha.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Eun Jung Thak
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Dong-Jik Lee
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Michael O. Agaphonov
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
- * E-mail:
| |
Collapse
|
7
|
Kriangkripipat T, Momany M. Aspergillus nidulans Pmts form heterodimers in all pairwise combinations. FEBS Open Bio 2014; 4:335-41. [PMID: 24936400 PMCID: PMC4055783 DOI: 10.1016/j.fob.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic protein O-mannosyltransferases (Pmts) are divided into three subfamilies (Pmt1, Pmt2, and Pmt4) and activity of Pmts in yeasts and animals requires assembly into complexes. In Saccharomyces cerevisiae, Pmt1 and Pmt2 form a heteromeric complex and Pmt 4 forms a homomeric complex. The filamentous fungus Aspergillus nidulans has three Pmts: PmtA (subfamily 2), PmtB (subfamily 1), and PmtC (subfamily 4). In this study we show that A. nidulans Pmts form heteromeric complexes in all possible pairwise combinations and that PmtC forms homomeric complexes. We also show that MsbA, an ortholog of a Pmt4-modified protein, is not modified by PmtC.
Collapse
Affiliation(s)
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Xu C, Wang S, Thibault G, Ng DTW. Futile Protein Folding Cycles in the ER Are Terminated by the Unfolded Protein O-Mannosylation Pathway. Science 2013; 340:978-81. [DOI: 10.1126/science.1234055] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Fernández-Álvarez A, Marín-Menguiano M, Lanver D, Jiménez-Martín A, Elías-Villalobos A, Pérez-Pulido AJ, Kahmann R, Ibeas JI. Identification of O-mannosylated virulence factors in Ustilago maydis. PLoS Pathog 2012; 8:e1002563. [PMID: 22416226 PMCID: PMC3295589 DOI: 10.1371/journal.ppat.1002563] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 01/12/2023] Open
Abstract
The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis. The O-mannosyltransferase Pmt4 is essential for virulence of animal and plant pathogenic fungi. This protein attaches one mannose at serine/threonine residues of cell wall and secreted proteins modulating their location and function. Thus, the crucial role of Pmt4 in fungal pathogenic development is probably caused by a defective glycosylation of its target proteins altering host-fungus interaction. In this paper, we performed a screen for Pmt4 target proteins employing the fungus Ustilago maydis, which causes smut disease in maize plants. This allowed identifying novel Pmt4 target proteins having a crucial role on its virulence. One of these targets is the signalling mucin Msb2, a conserved protein which acts upstream of MAP kinase cascades in various fungi and regulates early pathogenic development in U. maydis. We propose that Pmt4-dependent glycosylation of the extracellular domain of Msb2 is required for Msb2 activity and hence pathogenic development of U. maydis. This is divergent to the situation in S. cerevisiae where the mannosylated extracellular region of Msb2p possesses a negative regulatory function. In addition, we demonstrate important roles of Pmt4 during later stages of plant infection and identified Pmt4 target proteins which could be responsible for the virulence defect of pmt4 mutants during tumor formation.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Daniel Lanver
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alberto Jiménez-Martín
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alberto Elías-Villalobos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Regine Kahmann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - José I. Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- * E-mail:
| |
Collapse
|
11
|
Zhang L, Ten Hagen KG. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture. J Biol Chem 2010; 285:34477-84. [PMID: 20807760 DOI: 10.1074/jbc.m110.133561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mucin type O-glycosylation is a highly conserved form of post-translational modification initiated by the family of enzymes known as the polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs in mammals and PGANTs in Drosophila). To address the cellular functions of the many PGANT family members, RNA interference (RNAi) to each pgant gene was performed in two independent Drosophila cell culture lines. We demonstrate that RNAi to individual pgant genes results in specific reduction in gene expression without affecting the expression of other family members. Cells with reduced expression of individual pgant genes were then examined for changes in viability, morphology, adhesion, and secretion to assess the contribution of each family member to these cellular functions. Here we find that RNAi to pgant3, pgant6, or pgant7 resulted in reduced secretion, further supporting a role for O-glycosylation in proper secretion. Additionally, RNAi to pgant3 or pgant6 resulted in altered Golgi organization, suggesting a role for each in establishing or maintaining proper secretory apparatus structure. Other subcellular effects observed included multinucleated cells seen after RNAi to either pgant2 or pgant35A, suggesting a role for these genes in the completion of cytokinesis. These studies demonstrate the efficient and specific knockdown of pgant gene expression in two Drosophila cell culture systems, resulting in specific morphological and functional effects. Our work provides new information regarding the biological roles of O-glycosylation and illustrates a new platform for interrogating the cellular and subcellular effects of this form of post-translational modification.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
12
|
Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. EUKARYOTIC CELL 2009; 8:1465-74. [PMID: 19648468 DOI: 10.1128/ec.00371-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus nidulans possesses three pmt genes encoding protein O-d-mannosyltransferases (Pmt). Previously, we reported that PmtA, a member of the PMT2 subfamily, is involved in the proper maintenance of fungal morphology and formation of conidia (T. Oka, T. Hamaguchi, Y. Sameshima, M. Goto, and K. Furukawa, Microbiology 150:1973-1982, 2004). In the present paper, we describe the characterization of the pmtA paralogues pmtB and pmtC. PmtB and PmtC were classified as members of the PMT1 and PMT4 subfamilies, respectively. A pmtB disruptant showed wild-type (wt) colony formation at 30 degrees C but slightly repressed growth at 42 degrees C. Conidiation of the pmtB disruptant was reduced to approximately 50% of that of the wt strain; in addition, hyperbranching of hyphae indicated that PmtB is involved in polarity maintenance. A pmtA and pmtB double disruptant was viable but very slow growing, with morphological characteristics that were cumulative with respect to either single disruptant. Of the three single pmt mutants, the pmtC disruptant showed the highest growth repression; the hyphae were swollen and frequently branched, and the ability to form conidia under normal growth conditions was lost. Recovery from the aberrant hyphal structures occurred in the presence of osmotic stabilizer, implying that PmtC is responsible for the maintenance of cell wall integrity. Osmotic stabilization at 42 degrees C further enabled the pmtC disruptant to form conidiophores and conidia, but they were abnormal and much fewer than those of the wt strain. Apart from the different, abnormal phenotypes, the three pmt disruptants exhibited differences in their sensitivities to antifungal reagents, mannosylation activities, and glycoprotein profiles, indicating that PmtA, PmtB, and PmtC perform unique functions during cell growth.
Collapse
|
13
|
|
14
|
Sharifmoghadam MR, Valdivieso MH. TheSchizosaccharomyces pombeMap4 adhesin is a glycoprotein that can be extracted from the cell wall with alkali but not with β-glucanases and requires the C-terminal DIPSY domain for function. Mol Microbiol 2008; 69:1476-90. [DOI: 10.1111/j.1365-2958.2008.06375.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Luo Z, Van Vuuren HJ. Stress-induced production, processing and stability of a seripauperin protein, Pau5p, in Saccharomyces cerevisiae. FEMS Yeast Res 2008; 8:374-85. [DOI: 10.1111/j.1567-1364.2008.00355.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Cantero PD, Lengsfeld C, Prill SKH, Subanović M, Román E, Pla J, Ernst JF. Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 2007; 64:1115-28. [PMID: 17501932 DOI: 10.1111/j.1365-2958.2007.05723.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Five Pmt isoforms O-mannosylate secretory proteins in Candida albicans. Comparisons of genome-wide transcript patterns of each pmt mutant revealed commonly downregulated genes involved in glycolysis and glycerol production. Increased phosphorylation of the Cek1p- but not the Mkc1p-MAP kinase, as well as increased transcript levels for some stress-related genes were detected in the pmt1 strain but not in the other pmt mutants. The transcriptomal pattern after short-term inhibition of Pmt1p activity confirmed stress responses, but did not indicate an alteration of glycolytic flow. Short- but not long-term adaptation to Pmt1p inhibition required signalling components Cek1p, Mkc1p, Efg1p and Tpk1p. Cna1p (calcineurin) but not its downstream effectors Crz1p and Crz2p was generally essential to allow growth during Pmt1p inhibition; accordingly, cyclosporin A strongly inhibited growth of the pmt1 mutant. The lack of Pmt isoforms influenced transcript levels for the remaining isoforms both positively and negatively, suggesting complex cross-regulation among PMT genes. These results confirm individual functions of Pmt isoforms but suggest a common biphasic adaptation response to Pmt deficiency. While known signalling pathways modulate adaptation for a short-term, long-term adaptation requires calcineurin, adjustments of remaining Pmt activities and of glycolytic flow.
Collapse
Affiliation(s)
- Pilar D Cantero
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Efficient antibody production upon suppression of O mannosylation in the yeast Ogataea minuta. Appl Environ Microbiol 2007; 74:446-53. [PMID: 18039826 DOI: 10.1128/aem.02106-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When antibodies were expressed in the methylotrophic yeast Ogataea minuta, we found that abnormal O mannosylation occurred in the secreted antibody. Yeast-specific O mannosylation is initiated by the addition of mannose at serine (Ser) or threonine (Thr) residues in the endoplasmic reticulum via protein O mannosyltransferase (Pmt) activity. To suppress the addition of O-linked sugar chains on antibodies, we examined the possibility of inhibiting Pmt activity by the addition of a Pmt inhibitor during cultivation. The Pmt inhibitor was found to partially suppress the O mannosylation on the antibodies. Surprisingly, the suppression of O mannosylation was associated with an increased amount of assembled antibody (H2L2) and enhanced the antigen-binding activity of the secreted antibody. In this study, we demonstrated the expression of human antibody in O. minuta and elucidated the relationship between O mannosylation and antibody production in yeast.
Collapse
|
18
|
Zhou H, Hu H, Zhang L, Li R, Ouyang H, Ming J, Jin C. O-Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell wall integrity and conidium morphology, especially at an elevated temperature. EUKARYOTIC CELL 2007; 6:2260-8. [PMID: 17905922 PMCID: PMC2168251 DOI: 10.1128/ec.00261-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein O-mannosyltransferases initiate O mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. In this study, the PMT gene family of the human fungal pathogen Aspergillus fumigatus was identified and characterized. Unlike the case in Saccharomyces cerevisiae, where the PMT family is highly redundant, only one member of each PMT subfamily, namely, Afpmt1, Afpmt2, and Afpmt4, is present in A. fumigatus. Mutants with a deletion of Afpmt1 are viable. In vitro and in vivo activity assays confirmed that the protein encoded by Afpmt1 acts as an O-mannosyltransferase (AfPmt1p). Characterization of the DeltaAfpmt1 mutant showed that a lack of AfPmt1p results in sensitivity to elevated temperature and defects in growth and cell wall integrity, thereby affecting cell morphology, conidium formation, and germination. In a mouse model, Afpmt1 was not required for the virulence of A. fumigatus under the experimental conditions used.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 2007; 71:1415-27. [PMID: 17587671 DOI: 10.1271/bbb.70080] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein glycosylation is essential for eukaryotic cells from yeasts to humans. When compared to N-glycosylation, O-glycosylation is variable in sugar components and the mode of linkages connecting the sugars. In fungi, secretory proteins are commonly mannosylated by protein O-mannosyltransferase (PMT) in the endoplasmic reticulum, and subsequently glycosylated by several glycosyltransferases in the Golgi apparatus to form glycoproteins with diverse O-glycan structures. Protein O-glycosylation has roles in modulating the function of secretory proteins by enhancing the stability and solubility of the proteins, by affording protection from protease degradation, and by acting as a sorting determinant in yeasts. In filamentous fungi, protein O-glycosylation contributes to proper maintenance of fungal morphology, hyphal development, and differentiation. This review describes recent studies of the structure and function of protein O-glycosylation in industrially and medically important fungi.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Japan.
| |
Collapse
|
20
|
Rouabhia M, Schaller M, Corbucci C, Vecchiarelli A, Prill SKH, Giasson L, Ernst JF. Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 2005; 73:4571-80. [PMID: 16040968 PMCID: PMC1201229 DOI: 10.1128/iai.73.8.4571-4580.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PMT gene family in Candida albicans encodes five isoforms of protein mannosyltransferases (Pmt proteins Pmt1p, Pmt2p, Pmt4p, Pmt5p, and Pmt6p) that initiate O mannosylation of secretory proteins. We compared virulence characteristics of pmt mutants in two complex, three-dimensional models of localized candidiasis, using reconstituted human epithelium (RHE) and engineered human oral mucosa (EHOM); in addition, mutants were tested in a mouse model of hematogenously disseminated candidiasis (HDC). All pmt mutants showed attenuated virulence in the HDC model and at least one model of localized candidiasis. The pmt5 mutant, which lacks in vitro growth phenotypes, was less virulent in the EHOM and HDC assays but had no consistent phenotype in the RHE assay. In contrast, the pmt4 and pmt6 mutants were less virulent in the RHE and HDC assays but not in the EHOM assay. The results stress the contribution of all Pmt isoforms to the virulence of C. albicans and suggest that the importance of individual Pmt isoforms may differ in specific host niches. We propose that Pmt proteins may be suitable targets for future novel classes of antifungal agents.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Institut for Mikrobiologie, Universitätsstr. 1/26.12, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Tanaka N, Fujita Y, Suzuki S, Morishita M, Giga-Hama Y, Shimoda C, Takegawa K. Characterization of O-mannosyltransferase family in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2005; 330:813-20. [PMID: 15809069 DOI: 10.1016/j.bbrc.2005.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 11/30/2022]
Abstract
Protein O-glycosylation is an essential protein modification in eukaryotic cells. In Saccharomyces cerevisiae, O-mannosylation is initiated in the lumen of the endoplasmic reticulum by O-mannosyltransferase gene products (Pmt1p-7p). A search of the Schizosaccharomyces pombe genome database revealed a total of three O-glycoside mannosyltransferase homologs (ogm1+, ogm2+, and ogm4+), closely related to Saccharomyces cerevisiae PMT1, PMT2, and PMT4. Although individual ogm genes were not found to be essential, ogm1Delta and ogm4Delta mutants exhibited aberrant morphology and failed to agglutinate during mating. The phenotypes of the ogm4Delta mutant were not complemented by overexpression of ogm1+ or ogm2+, suggesting that each of the Ogm proteins does not have overlapping functions. Heterologous expression of a chitinase from S. cerevisiae in the ogm mutants revealed that O-glycosylation of chitinase had decreased in ogm1Delta cells. A GFP-tagged Fus1p from S. cerevisiae was specifically not glycosylated and accumulated in the Golgi in ogm4Delta cells. These results indicate that O-glycosylation initiated by Ogm proteins plays crucial physiological roles and can serve as a sorting determinant for protein transport of membrane glycoproteins in S. pombe.
Collapse
Affiliation(s)
- Naotaka Tanaka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Prill SKH, Klinkert B, Timpel C, Gale CA, Schröppel K, Ernst JF. PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 2005; 55:546-60. [PMID: 15659169 DOI: 10.1111/j.1365-2958.2004.04401.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein O-mannosyltransferases (Pmt proteins) initiate O-mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6, as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3- or tetOScHOP1-promoters, was blocked in non-permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p-mediated O-glycosylation for environment-specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell wall-destabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans. Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance.
Collapse
Affiliation(s)
- Stephan K-H Prill
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Agaphonov MO, Sokolov SS, Romanova NV, Sohn JH, Kim SY, Kalebina TS, Choi ES, Ter-Avanesyan MD. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator inHansenula polymorpha. Yeast 2005; 22:1037-47. [PMID: 16200504 DOI: 10.1002/yea.1297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal.
Collapse
Affiliation(s)
- Michael O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Center, 3rd Cherepkovskaya Str. 15A, Moscow 121552, Russia.
| | | | | | | | | | | | | | | |
Collapse
|