1
|
Yang Y, Li N, Jiang Y, Liu Z, Liu X, Zhao J, Zhang H, Chen W. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains. J Dairy Sci 2019; 102:6027-6031. [PMID: 31056324 DOI: 10.3168/jds.2018-15973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
Abstract
To date, most studies of lactose utilization have focused on the genetic diversity of lactic acid bacteria or its influence on product quality, but phenotypic evaluation has rarely been based on metabolic characteristics. In the present study, we investigated the growth, acid production, β-galactosidase, and 6-phospho-β-galactosidase activities of 16 Lactococcus lactis strains obtained from various habitats with lactose as the sole carbon source. The 15 L. lactis strains obtained from various habitats exhibited significant differences in growth and acid production characteristics in the de Man, Rogosa, and Sharpe-lactose broth, and 4 strains consumed more lactose when cultured in skim milk than the type strain ATCC 19435. Among these strains, DQHXNQ38-12 mainly produced acetoin and diacetyl when cultured in skim milk, whereas the strains 15M2 and 5G2 produced high levels of acid and formed curd rapidly. We concluded that the use of lactose is necessary for strain adaptation to the dairy niche. Comprehensive studies of lactose use and the fermentation characteristics of L. lactis are of significant importance.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China
| | - Yang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China.
| | - Xiaoming Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Horie A, Tomita Y, Ohshio K, Fujiwara D, Fujii T. Characterization of genomic DNA of lactic acid bacteria for activation of plasmacytoid dendritic cells. BMC Microbiol 2019; 19:88. [PMID: 31060586 PMCID: PMC6501324 DOI: 10.1186/s12866-019-1458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/15/2019] [Indexed: 11/15/2022] Open
Abstract
Background Lactococcus lactis strain Plasma (LC-Plasma) possesses strong stimulatory activity for plasmacytoid dendritic cells (pDCs) via the TLR9-Myd88 pathway. To reveal the effective lactic acid bacteria (LAB) genome structure for pDCs stimulatory activity, we performed in vitro screening, using randomly selected 200 bp DNA fragments from the LC-Plasma genome. Results We found that the CpG motif copy number in the fragments was positively and significantly correlated with pDCs stimulatory activity (R = 0.491, p < 0.01). However, the determination coefficient (R2) was 0.24, which means other factors affecte activity. We found that the G + C contents of the fragment showed a significant negative correlation with activity (R = − 0.474, p < 0.01). The correlation between pDCs stimulatory activity and the copy number of CpG motifs was greatly increased when DNA fragments were stratified by G + C contents. We also performed bioinformatics analysis and a screening of LAB strains with high pDCs stimulatory activity. Species with a high copy number of CpG motifs in the low-G + C region of their genomes had higher probability of inducing high-pDCs stimulatory activity. L. lactis subsp. lactis, Leuconostoc mesenteroides, and Pediococcus pentosaceus were three typical examples of LAB that had high pDCs stimulatory activity. Conclusions Our data suggested that the G + C content of DNA is one of the critical factors for pDCs stimulatory activity by DNA fragments. Furthermore, we found that the copy number in the low-G + C regions strongly affected the pDCs stimulatory activity of whole cells of LAB strains. These results should be useful for the design of new DNA fragments containing CpG motifs. This study also demonstrated an in silico screening method for identifying bacterial species that are able to activate pDCs. Electronic supplementary material The online version of this article (10.1186/s12866-019-1458-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Horie
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan.,Research Laboratories for Beverage Technologies, Kirin Co., Ltd., Yokohama, Japan
| | - Yasuyuki Tomita
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Konomi Ohshio
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Daisuke Fujiwara
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan
| | - Toshio Fujii
- Central Laboratories for Key Technologies, Kirin Co., Ltd., Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, Yokohama, 2360004, Japan.
| |
Collapse
|
4
|
Mariam SH, Zegeye N, Aseffa A, Howe R. Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. BMC Microbiol 2017; 17:35. [PMID: 28202007 PMCID: PMC5312424 DOI: 10.1186/s12866-017-0944-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 02/03/2017] [Indexed: 01/28/2023] Open
Abstract
Background Food-borne infections cause huge economic and human life losses. Listeria monocytogenes and Salmonella enterica serovar Enteritidis are among the top ranking pathogens causing such losses. Control of such infections is hampered by persistent contamination of foods and food-processing environments, resistance of pathogens to sanitizing agents, existence of heterogeneous populations of pathogens (including culturable and viable but non-culturable cells) within the same food items, and inability to detect all such pathogens by culture-based methods. Modern methods such as flow cytometry allow analyses of cells at the single cell level within a short time and enable better and faster detection of such pathogens and distinctions between live and dead cells. Such methods should be complemented by control strategies including the use of beneficial bacteria that produce metabolites capable of inhibiting food-borne pathogens. In this study, broth cultures of lactic acid bacteria (LAB) isolated from fermented milk were tested for production of substances capable of inhibiting L. monocytogenes and S. Enteritidis in co-culture with LAB by assessment of colony-forming units (CFU) and live:dead cell populations by flow cytometry. Results The LAB isolates belonged to the species Lactococcus lactis, Enterococcus faecalis and Enterococcus faecium. Some LAB were effective in inhibition. Plating indicated up to 99% reduction in CFU from co-cultures compared to control cultures. Most of the bacteria in both cultures were in the viable but non-culturable state. The flow data showed that there were significantly higher dead cell numbers in co-cultures than in control cultures, indicating that such killing was caused by diffusible substances produced by the LAB cultures. Conclusion This study showed that metabolites from selected local LAB species can be used to significantly reduce pathogen load. However, conditions of use and application need to be further investigated and optimized for large-scale utilization. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0944-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Solomon H Mariam
- Section of Microbiology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. .,Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|