1
|
Bisharat N, Koton Y, Oliver JD. Phylogeography of the marine pathogen, Vibrio vulnificus, revealed the ancestral scenarios of its evolution. Microbiologyopen 2020; 9:e1103. [PMID: 32779403 PMCID: PMC7520988 DOI: 10.1002/mbo3.1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is the leading cause of seafood‐associated deaths worldwide. Despite the growing knowledge about the population structure of V. vulnificus, the evolutionary history and the ancestral relationships of strains isolated from various regions around the world have not been determined. Using the largest collection of sequence and isolate data of V. vulnificus to date, we applied ancestral character reconstruction to study the phylogeography of V. vulnificus. Multilocus sequence typing data from 10 housekeeping genes were used for the inference of ancestral states and reconstruction of the evolutionary history. The findings showed that the common ancestor of all V. vulnificus populations originated from East Asia, and later evolved into two main clusters that spread with time and eventually evolved into distinct populations in different parts of the world. While we found no meaningful insights concerning the evolution of V. vulnificus populations in the Middle East; however, we were able to reconstruct the ancestral scenarios of its evolution in East Asia, North America, and Western Europe.
Collapse
Affiliation(s)
- Naiel Bisharat
- Department of Medicine D, Emek Medical Center, Clalit Health Services, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology-Technion, Haifa, Israel
| | - Yael Koton
- Department of Medicine D, Emek Medical Center, Clalit Health Services, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology-Technion, Haifa, Israel
| | - James D Oliver
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
2
|
Hernández-Cabanyero C, Amaro C. Phylogeny and life cycle of the zoonotic pathogen Vibrio vulnificus. Environ Microbiol 2020; 22:4133-4148. [PMID: 32567215 DOI: 10.1111/1462-2920.15137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.
Collapse
Affiliation(s)
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, Valencia, 46100, Spain
| |
Collapse
|
3
|
Phippen BL, Oliver JD. Impact of hypoxia on gene expression patterns by the human pathogen, Vibrio vulnificus, and bacterial community composition in a North Carolina estuary. GEOHEALTH 2017; 1:37-50. [PMID: 32158978 PMCID: PMC7007117 DOI: 10.1002/2016gh000024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 05/11/2023]
Abstract
Estuarine environments are continuously being shaped by both natural and anthropogenic sources which directly/indirectly influence the organisms that inhabit these important niches on both individual and community levels. Human infections caused by pathogenic Vibrio species are continuing to rise, and factors associated with global climate change have been suggested to be impacting their abundance and geographical range. Along with temperature, hypoxia has also increased dramatically in the last 40 years, which has led to persistent dead zones worldwide in areas where these infections are increasing. Thus, utilizing membrane diffusion chambers, we investigated the impact of in situ hypoxia on the gene expression of one such bacterium, Vibrio vulnificus, which is an inhabitant of these vulnerable areas worldwide. By coupling these data with multiple abiotic factors, we were able to demonstrate that genes involved in numerous functions, including those involved in virulence, environmental persistence, and stressosome production, were negatively correlated with dissolved oxygen. Furthermore, comparing 16S ribosomal RNA, we found similar overall community compositions during both hypoxia and normoxia. However, unweighted beta diversity analyses revealed that although certain classes of bacteria dominate in both low- and high-oxygen environments, there is the potential for quantitative shifts in lower abundant species, which may be important for effective risk assessment in areas that are becoming increasingly more hypoxic. This study emphasizes the importance of investigating hypoxia as a trigger for gene expression changes by marine Vibrio species and highlights the need for more in depth community analyses during estuarine hypoxia.
Collapse
Affiliation(s)
- Britney L. Phippen
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - James D. Oliver
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
- Duke University Marine LaboratoryDuke UniversityBeaufortNorth CarolinaUSA
| |
Collapse
|
4
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
5
|
Kim BS, Satchell KJF. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors. Cell Microbiol 2016; 18:1078-93. [PMID: 26780191 DOI: 10.1111/cmi.12568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 02/07/2023]
Abstract
Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Draft Genome Sequence of the Pathogenic Bacterium Vibrio vulnificus V252 Biotype 1, Isolated in Israel. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01182-15. [PMID: 26472833 PMCID: PMC4611685 DOI: 10.1128/genomea.01182-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report the genome sequence of the pathogenic Vibrio vulnificus biotype 1 clade B, which is suggested to have a common ancestor with biotype 3. This draft genome of the clinical strain V252, isolated in Israel, represents the clonal clade B group that contains both clinical and environmental strains.
Collapse
|
7
|
Phippen BL, Oliver JD. Clinical and environmental genotypes of Vibrio vulnificus display distinct, quorum-sensing-mediated, chitin detachment dynamics. Pathog Dis 2015; 73:ftv072. [PMID: 26377182 DOI: 10.1093/femspd/ftv072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2015] [Indexed: 12/15/2022] Open
Abstract
The ability for bacteria to attach to and detach from various substrata is important for colonization, survival and transitioning to new environments. An opportunistic human pathogen, Vibrio vulnificus, can cause potentially fatal septicemia after ingestion of undercooked seafood. Based on genetic polymorphisms, strains of this species are subtyped into clinical (C) and environmental (E) genotypes. Vibrio vulnificus readily associates with chitin, thus we investigated chitin detachment dynamics in these disparate genotypes. We found that C-genotypes detach significantly more than E-genotypes after 24 hours in aerobic as well as anaerobic conditions. Furthermore, expression of genes involved in type IV pilin production was significantly downregulated in C-genotypes compared to E-genotypes, suggesting an importance in detachment. Interestingly, gbpA, a gene that has been shown to be important in host colonization in V. cholerae, was upregulated in the C-genotypes during detachment. Additionally, we found that C-genotypes detached to a greater extent, and produced more quorum-sensing (QS) autoinducer-2 molecules relative to E-genotypes, which suggests a role for QS in detachment. These findings suggest that for V. vulnificus, QS-mediated detachment may be a potential mechanism for transitioning into a human host for C-genotypes, while facilitating E-genotype maintenance in the estuarine environment.
Collapse
Affiliation(s)
- Britney L Phippen
- Biological Sciences, UNCC, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - James D Oliver
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Koton Y, Gordon M, Chalifa-Caspi V, Bisharat N. Comparative genomic analysis of clinical and environmental Vibrio vulnificus isolates revealed biotype 3 evolutionary relationships. Front Microbiol 2015; 5:803. [PMID: 25642229 PMCID: PMC4295529 DOI: 10.3389/fmicb.2014.00803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59 and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C) and environmental (E), all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins) were present in all human pathogenic strains (both biotype 3 and non-biotype 3) and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS) proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and formed a genetically distinct group within the E-cluster. The unique epidemiological circumstances facilitated disease outbreak and brought this genotype to the attention of the scientific community.
Collapse
Affiliation(s)
- Yael Koton
- Department of Medicine D, Emek Medical Center Afula, Israel ; Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Michal Gordon
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Naiel Bisharat
- Department of Medicine D, Emek Medical Center Afula, Israel ; Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
9
|
Raz N, Danin-Poleg Y, Hayman RB, Bar-On Y, Linetsky A, Shmoish M, Sanjuán E, Amaro C, Walt DR, Kashi Y. Genome-wide SNP-genotyping array to study the evolution of the human pathogen Vibrio vulnificus biotype 3. PLoS One 2014; 9:e114576. [PMID: 25526263 PMCID: PMC4272304 DOI: 10.1371/journal.pone.0114576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae, horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen.
Collapse
Affiliation(s)
- Nili Raz
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ryan B. Hayman
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Yudi Bar-On
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Linetsky
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Michael Shmoish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Eva Sanjuán
- Department of Microbiology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Carmen Amaro
- Department of Microbiology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
10
|
Draft Genome Sequence of Israeli Outbreak-Associated Vibrio vulnificus Biotype 3 Clinical Isolate BAA87. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00032-14. [PMID: 24652973 PMCID: PMC3961720 DOI: 10.1128/genomea.00032-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vibrio vulnificus is a seafood-associated pathogen that causes severe wound and intestinal infections. Biotype 3 of V. vulnificus emerged in 1996 as the cause of an Israeli outbreak associated with the handling of infected tilapia. Here, we describe the whole-genome sequence of the ATCC biotype 3 clinical isolate BAA87 (CDC9530-96).
Collapse
|
11
|
Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 2014; 82:2148-57. [PMID: 24614656 DOI: 10.1128/iai.00017-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase.
Collapse
|
12
|
Efimov V, Danin-Poleg Y, Raz N, Elgavish S, Linetsky A, Kashi Y. Insight into the evolution of Vibrio vulnificus biotype 3's genome. Front Microbiol 2013; 4:393. [PMID: 24385974 PMCID: PMC3866513 DOI: 10.3389/fmicb.2013.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022] Open
Abstract
Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains of V. vulnificus are biochemically classified into three biotypes. The newly emerged biotype 3 appears to be rather clonal and geographically restricted to Israel, where it caused an outbreak of wound infections and bacteremia. To understand the evolution of the bacterium's genome, we sequenced and analyzed the genome of biotype 3 strain VVyb1(BT3), and then conducted a microbial environmental survey of the hypothesized niche from which it probably evolved. The genome of this environmental isolate revealed higher similarity to the published biotype 1 genomes of clinical strains (90%) than to the environmental strains (87%), supporting the virulence of the biotype 3 group. Moreover, 214 of the total 5361 genes were found to be unique to strain VVyb1(BT3), having no sequence similarity to any of the known genomes of V. vulnificus; 35 of them function in DNA mobility and rearrangement, supporting the role of horizontal gene transfer in genome evolution. Interestingly, 29 of the “unique” genes had homologies among Shewanella species. In a survey conducted in aquaculture ponds in Israel, we successfully co-isolated Shewanella and V. vulnificus from the same niche, further supporting the probable contribution of Shewanella to the genome evolution of biotype 3. Indeed, one gene was found in a S. algae isolate. Surprisingly, molecular analysis revealed that some of the considered unique genes are harbored by non-sequenced biotype 1 strains isolated from the same environment. Finally, analyses of the biotype 3 genome together with the environmental survey suggested that its genome originated from a biotype 1 Israeli strain that acquired a rather small number of genes from other bacterial species in the niche, such as Shewanella. Therefore, aquaculture is likely to play a major role as a man-made ecological niche in bacterial evolution, leading the emergence of new pathogenic groups in V. vulnificus.
Collapse
Affiliation(s)
- Vera Efimov
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Yael Danin-Poleg
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Nili Raz
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Sharona Elgavish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Alex Linetsky
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Yechezkel Kashi
- Laboratory of Food Microbiology and Applied Genomics, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|