1
|
Akhbar Anugrah F, Nyoman Pugeg Aryantha I, Masita R, Zubaidah S, Izzati Mohd Noh N. Isolation of Bacterial Endophytes Associated with Cinchona ledgeriana Moens. and Their Potential in Plant-growth Promotion, Antifungal and Quinoline Alkaloids Production. J GEN APPL MICROBIOL 2024:2024.09.002. [PMID: 39462602 DOI: 10.2323/jgam.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
For centuries, quinoline alkaloids from the tree bark of Cinchona ledgeriana (C. ledgeriana) have been used in the treatment of malaria. However, unsustainable harvesting and poor growth conditions greatly limit its use as raw materials. Since plant endophytes are known to contribute to the physiology of the host and its metabolism for survival, this study showed the potential of endophytes isolated from C. ledgeriana roots in promoting the germination of Catharathus roseus (C. roseus) seedlings and the biosynthesis of quinoline alkaloid. In this present study, we found that the Enterobacteriaceae family comprised the majority of the bacterial community, with Klebsiella pneumoniae being the most abundant species at the C. ledgeriana roots. Characterization of culturable bacterial endophytes from the C. ledgeriana roots showed that all the isolates displayed plant growth-promoting factors and antifungal activities. Interestingly, chromatographic analyses led to the identification of the quinoline alkaloids producing Achromobacter xylosoxidans (A. xylosoxidans) A1. Moreover, the co-cultures of A. xylosoxidans A1, Cytobacillus solani (C. solani) A3, and Klebsiella aerogenes A6 increased the fresh and dry weight of the C. roseus seedlings. These results suggest that these bacterial endophytes may enhance quinine and quinidine production as well as the growth of the plant host.
Collapse
Affiliation(s)
- Fauzi Akhbar Anugrah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia
| | | | - Rahmi Masita
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
| | - Siti Zubaidah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia
| |
Collapse
|
2
|
Iqbal MZ, He P, He P, Wu Y, Munir S, He Y. The Response of Murine Gut Microbiome in the Presence of Altered rpoS Gene of Klebsiella pneumoniae. Int J Mol Sci 2024; 25:9222. [PMID: 39273171 PMCID: PMC11395600 DOI: 10.3390/ijms25179222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially China. This study explored the role of the gut microbiota during Kp infection using mouse model; including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water; respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting the cells from active growth to survival mode. Our study examined notable differences in microbiome composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance analysis identified that these candidate taxa potentially influence disease progression and pathogen virulence. Functional prediction analysis showed that most bacterial groups were functionally involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic cluster formation. These findings challenge the conventional understanding and highlight the need for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome-immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
4
|
Giannattasio-Ferraz S, Ene A, Johnson G, Maskeri L, Oliveira AP, Banerjee S, Barbosa-Stancioli EF, Putonti C. Multidrug-Resistant Klebsiella variicola Isolated in the Urine of Healthy Bovine Heifers, a Potential Risk as an Emerging Human Pathogen. Appl Environ Microbiol 2022; 88:e0004422. [PMID: 35416681 PMCID: PMC9088279 DOI: 10.1128/aem.00044-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.
Collapse
Affiliation(s)
- Silvia Giannattasio-Ferraz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - André Penido Oliveira
- Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, Uberaba, Minas Gerais, Brazil
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Edel F. Barbosa-Stancioli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
5
|
da Silva LCD, Ferreira FIP, Dezoti LA, Nascimento CT, Orikasa C, Takita MA, de Medeiros AH. Diatraea saccharalis harbors microorganisms that can affect growth of sugarcane stalk-dwelling fungi. Braz J Microbiol 2021; 53:255-265. [PMID: 34735708 DOI: 10.1007/s42770-021-00647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae), the sugarcane borer, spends most of its life cycle inside the galleries it burrows into sugarcane stalk, where two rot-causing fungi Colletotrichum falcatum (Went, 1893) and Fusarium verticillioides (Nirenberg, 1976) are commonly found. Results have shown that microbiota harbored by D. saccharalis inhibits the growth of F. verticillioides and C. falcatum. D. saccharalis larvae were collected from chemical-free field plants, and yeast and bacteria from third and fourth-instar D. saccharalis regurgitate were isolated onto appropriate media. The percentage of F. verticillioides and C. falcatum mycelial growth inhibition was recorded. Out of 32 yeast isolates, 9 exerted 30 to 40% growth inhibition of C. falcatum or F. verticillioides. When 24 bacterial isolates were confronted with rot-causing fungi, six inhibited C. falcatum growth by 30 to 60%, and 24 isolates inhibited 30 to 60% of F. verticillioides growth. Bacteria and yeast isolates were identified through DNA sequencing of part of 16S rDNA and part of ITS1-5.8S-ITS2, respectively, revealing an abundance of isolates with sequence similarity to Klebsiella and Bacillus and Meyerozyma, which have been used as biological control agents and their ability to promote plant growth has been demonstrated. We have shown that microorganisms from borer regurgitate inhibit phytopathogen growth in vitro. Still, further investigation of the possible functions of D. saccharalis-associated microorganisms may help understand their ecological role in plant-insect-phytopathogen interaction.
Collapse
Affiliation(s)
| | - Francisco Inácio Paiva Ferreira
- Laboratory of Molecular Biology, Center of Citriculture "Sylvio Moreira", Rod. Anhanguera km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Lais Augusto Dezoti
- Laboratory of Molecular Biology, Center of Citriculture "Sylvio Moreira", Rod. Anhanguera km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Caroline Thamara Nascimento
- Laboratory of Plant-Insect Interactions, Federal University of Sao Carlos-Araras, Rodovia Anhanguera km 174, Araras, SP, 13600-970, Brazil
| | - Caroline Orikasa
- Laboratory of Plant-Insect Interactions, Federal University of Sao Carlos-Araras, Rodovia Anhanguera km 174, Araras, SP, 13600-970, Brazil
| | - Marco Aurélio Takita
- Laboratory of Molecular Biology, Center of Citriculture "Sylvio Moreira", Rod. Anhanguera km 158, Cordeirópolis, SP, 13490-970, Brazil
| | - Ane Hackbart de Medeiros
- Laboratory of Plant-Insect Interactions, Federal University of Sao Carlos-Araras, Rodovia Anhanguera km 174, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
6
|
Jha V, Purohit H, Dafale NA. Revealing the potential of Klebsiella pneumoniae PVN-1 for plant beneficial attributes by genome sequencing and analysis. 3 Biotech 2021; 11:473. [PMID: 34777930 DOI: 10.1007/s13205-021-03020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of Klebsiella pneumoniae PVN-1, isolated from effluent treatment plant (ETP), generates a 5.064 Mb draft genome with 57.6% GC content. The draft genome assembled into 19 contigs comprises 4783 proteins, 3 rRNA, 44 tRNA, 8 other RNA, 4911 genes, and 73 pseudogenes. Genome information revealed the presence of phosphate metabolism/solubilizing, potassium solubilizing, auxin production, and other plant benefiting attributes like enterobactin and pyrroloquinoline quinone biosynthesis genes. Presence of gcd and pqq genes in K. pneumoniae PVN-1 genome validates the inorganic phosphate solubilizing potential (528.5 mg/L). Pangenome analysis identified a unique 5'-Nucleotidase that further assists in enhanced phosphate acquisition. Additionally, the genetic potential for complete benzoate, catechol, and phenylacetate degradation with stress response and heavy metal (Cu, Zn, Ni, Co) resistance was identified in K. pneumoniae PVN-1. Functioning of annotated plant benefiting genes validates by the metabolic activity of auxin production (7.40 µg/mL), nitrogen fixation, catalase activity, potassium solubilization (solubilization index-3.47), and protease activity (proteolytic index-2.27). In conclusion, the K. pneumoniae PVN-1 genome has numerous beneficial qualities that can be employed to enhance plant growth as well as for phytoremediation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03020-2.
Collapse
|
7
|
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H. Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 2021; 52:2233-2245. [PMID: 34626346 DOI: 10.1007/s42770-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar Vera
- Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
8
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
9
|
Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N. Nitrogen fixing cereal: A rising hero towards meeting food security. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:912-920. [PMID: 34547550 DOI: 10.1016/j.plaphy.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen serves as one of the primary components of major biomolecules and thus extends a significant contribution to crop growth and yield. But the inability of plants to utilize freely available atmospheric N2 makes the whole agricultural system dependent on chemical fertilizers, which incur significant input cost to supplement required quantities of nitrogen to crops. Only bacteria and archaea have been gifted with the power of drawing free N2 from air to convert them into NH3, which is one of the two utilizable forms of nitrogen taken up by plants. Legumes, the only family of crops, can engage themselves in symbiotic nitrogen fixation where they establish a mutualistic relationship with nitrogen-fixing bacteria and in turn, can waive off the necessity of adding nitrogen fertilizers. Sincere effort, therefore, has been undertaken to incorporate this capability of nitrogen-fixation into non-legume crops, especially cereals which make up a vital portion in the food basket. Biotechnological interventions have also played important role in providing nitrogen fixing trait to non-legumes. This review takes up an effort to look into and accumulate all the important updates to date regarding nitrogen-fixing non-legumes with a special focus on cereals, which is one of the most important future goals in the field of science in the present era.
Collapse
Affiliation(s)
- Parichita Priyadarshini
- ICAR-Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, U.P., 284003, India
| | - Sharani Choudhury
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, U.P., 274103, India.
| | - Alka Bharati
- ICAR-Central Agroforestry Research Institute, Jhansi, U.P., 284003, India
| | - N Sreeshma
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
10
|
Hu Z, Chen W, Guo G, Dong C, Shen Y, Qin S, Chen L, Zhang W. An Escherichia coli isolate from hospital sewage carries bla NDM-1 and bla oxa-10. Arch Microbiol 2021; 203:4427-4432. [PMID: 34129054 DOI: 10.1007/s00203-021-02431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Carbapenems, as the "last line of defense" against Gram-negative bacteria, are increasingly being challenged by drug-resistant bacteria, especially Enterobacteriaceae. In this study, a carbapenem-resistant Gram-negative bacterium, named AH001, was isolated from hospital sewage, and a modified Hodge test confirmed that this bacterium can produce carbapenemase. Further analysis revealed that this bacterium exhibits multidrug resistance against an additional seven antibiotics. Whole-genome sequencing and analysis showed that AH001 could not be classified by existing MLST, and its serotype could not be distinguished among O9, O89 or O168 according to O antigen prediction. More attention should be given to the role of environmental sources of Escherichia coli in the development and transfer of drug resistance in the hospital environment.
Collapse
Affiliation(s)
- Zimeng Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Weiye Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Chen Dong
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - Yun Shen
- Institute of Food Safety and Assessment, Jiangsu Provincial Centers for Disease Control and Prevention, Nanjing, 210009, China
| | - Si Qin
- Institute of Food Safety and Assessment, Jiangsu Provincial Centers for Disease Control and Prevention, Nanjing, 210009, China
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China. .,OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
11
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|
12
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
13
|
Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol 2020; 40:1210-1231. [PMID: 32862700 DOI: 10.1080/07388551.2020.1808584] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endophytic microbes are present in nearly all of the plant species known to date but how they enter and flourish inside a host plant and display multiple benefits like plant growth promotion (PGP), biodegradation, and stress alleviation are still unexplored. Until now, the majority of the research has been conducted assuming that the host-endophyte interaction is analogous to the PGP microbes, although, studies related to the mechanisms of their infection, colonization as well as conferring important traits to the plants are limited. It would be fascinating to explore the role of these endophytic microbes in host gene expression, metabolism, and the modulation of phenotypic traits, under abiotic and biotic stress conditions. In this review, we critically focused on the following areas: (i) endophytic lifestyle and the mechanism of their entry into plant tissues, (ii) how endophytes modulate the immune system of plants and affect the genotypic and phenotypic expression of host plants under abiotic and biotic stress condition, and (iii) the role of omics and other integrated genomic approaches in unraveling complex host-endophyte signaling crosstalk. Furthermore, we discussed their role in phytoremediation of heavy metal stress and whole genomic analysis based on an understanding of different metabolic pathways these endophytes utilize to combat stress.
Collapse
Affiliation(s)
- Anamika Dubey
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Ashwani Kumar
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Selvadurai Dayanandan
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India.,Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Mohammad Latif Khan
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| |
Collapse
|
14
|
Lin B, Song Z, Jia Y, Zhang Y, Wang L, Fan J, Lin Z. Biological characteristics and genome-wide sequence analysis of endophytic nitrogen-fixing bacteria Klebsiella variicola GN02. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1555010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Biaosheng Lin
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Department of Biotechnology, College of Life Science, Longyan University, Longyan, Fujian, PR China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary Biotechnology, Longyan University, Longyan, Fujian, PR China
| | - Zhaozhao Song
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yulei Jia
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yulong Zhang
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lifang Wang
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Department of Biotechnology, College of Life Science, Longyan University, Longyan, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jinling Fan
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhanxi Lin
- Department of Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
15
|
Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect 2019; 8:973-988. [PMID: 31259664 PMCID: PMC6609320 DOI: 10.1080/22221751.2019.1634981] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
Abstract
The Klebsiella pneumoniae complex comprises seven K. pneumoniae-related species, including K. variicola. K. variicola is a versatile bacterium capable of colonizing different hosts such as plants, humans, insects and animals. Currently, K. variicola is gaining recognition as a cause of several human infections; nevertheless, its virulence profile is not fully characterized. The clinical significance of K. variicola infection is hidden by imprecise detection methods that underestimate its real prevalence; however, several methods have been developed to correctly identify this species. Recent studies of carbapenemase-producing and colistin-resistant strains demonstrate a potential reservoir of multidrug-resistant genes. This finding presents an imminent scenario for spreading antimicrobial resistant genes among close relatives and, more concerningly, in clinical and environmental settings. Since K. variicola was identified as a novel bacterial species, different research groups have contributed findings elucidating this pathogen; however, important details about its epidemiology, pathogenesis and ecology are still missing. This review highlights the most significant aspects of K. variicola, discussing its different phenotypes, mechanisms of resistance, and virulence traits, as well as the types of infections associated with this pathogen.
Collapse
Affiliation(s)
- Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, México
| |
Collapse
|
16
|
Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, Reddy PM, Martínez-Romero E. Nitrogen Fixation in Cereals. Front Microbiol 2018; 9:1794. [PMID: 30140262 PMCID: PMC6095057 DOI: 10.3389/fmicb.2018.01794] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/17/2018] [Indexed: 01/30/2023] Open
Abstract
Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs have been found on roots or as endophytes. Recently, culture-independent molecular approaches have revealed that some rhizobia are found in cereal plants and that bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant’s needs and never as good as those obtained with chemical fertilizers or with rhizobium in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-fixation in cereals. In many cases, these efforts have not been successful. However, new diazotroph mutants with enhanced capabilities to excrete ammonium are being successfully used to promote plant growth as commensal bacteria. In addition, there are ambitious projects supported by different funding agencies that are trying to genetically modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or to form nodules with nitrogen-fixing symbiotic rhizobia.
Collapse
Affiliation(s)
- Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Aline López-López
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Marco A Rogel
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Pallavolu M Reddy
- The Energy and Resources Institute, India Habitat Centre, New Delhi, India
| | | |
Collapse
|