1
|
Polsinelli I, Borruso L, Caliandro R, Triboli L, Esposito A, Benini S. A genome-wide analysis of desferrioxamine mediated iron uptake in Erwinia spp. reveals genes exclusive of the Rosaceae infecting strains. Sci Rep 2019; 9:2818. [PMID: 30808981 PMCID: PMC6391442 DOI: 10.1038/s41598-019-39787-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Erwinia amylovora is the etiological agent of fire blight, a devastating disease which is a global threat to commercial apple and pear production. The Erwinia genus includes a wide range of different species belonging to plant pathogens, epiphytes and even opportunistic human pathogens. The aim of the present study is to understand, within the Erwinia genus, the genetic differences between phytopathogenic strains and those strains not reported to be phytopathogenic. The genes related to the hydroxamate siderophores iron uptake have been considered due to their potential druggability. In E. amylovora siderophore-mediated iron acquisition plays a relevant role in the progression of Fire blight. Here we analyzed the taxonomic relations within Erwinia genus and the relevance of the genes related to the siderophore-mediated iron uptake pathway. The results of this study highlight the presence of a well-defined sub-group of Rosaceae infecting species taxonomically and genetically related with a high number of conserved core genes. The analysis of the complete ferrioxamine transport system has led to the identification of two genes exclusively present in the Rosaceae infecting strains.
Collapse
Affiliation(s)
- Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Rosanna Caliandro
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luca Triboli
- Centre for Integrative Biology, University of Trento, via Sommarive n. 9, 38123, Povo, Trento, Italy
| | - Alfonso Esposito
- Centre for Integrative Biology, University of Trento, via Sommarive n. 9, 38123, Povo, Trento, Italy.
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
2
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
3
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Borruso L, Salomone-Stagni M, Polsinelli I, Schmitt AO, Benini S. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes. Arch Microbiol 2017; 199:1335-1344. [PMID: 28695265 PMCID: PMC5663808 DOI: 10.1007/s00203-017-1409-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Marco Salomone-Stagni
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Armin Otto Schmitt
- Department of Nutztierwissenschaften, Breeding Informatics, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
5
|
Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Sci Rep 2017; 7:42633. [PMID: 28225009 PMCID: PMC5320501 DOI: 10.1038/srep42633] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.
Collapse
|
6
|
Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. FRONTIERS IN PLANT SCIENCE 2015; 6:434. [PMID: 26113855 PMCID: PMC4461811 DOI: 10.3389/fpls.2015.00434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 05/03/2023]
Abstract
There is an increasing interest in studying interspecies bacterial interactions in diseases of animals and plants as it is believed that the great majority of bacteria found in nature live in complex communities. Plant pathologists have thus far mainly focused on studies involving single species or on their interactions with antagonistic competitors. A bacterial disease used as model to study multispecies interactions is the olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi (Psv). Knots caused by Psv in branches and other aerial parts of the olive trees are an ideal niche not only for the pathogen but also for many other plant-associated bacterial species, mainly belonging to the genera Pantoea, Pectobacterium, Erwinia, and Curtobacterium. The non-pathogenic bacterial species Erwinia toletana, Pantoea agglomerans, and Erwinia oleae, which are frequently isolated inside the olive knots, cooperate with Psv in modulating the disease severity. Co-inoculations of these species with Psv result in bigger knots and better bacterial colonization when compared to single inoculations. Moreover, harmless bacteria co-localize with the pathogen inside the knots, indicating the formation of stable bacterial consortia that may facilitate the exchange of quorum sensing signals and metabolites. Here we discuss the possible role of bacterial communities in the establishment and development of olive knot disease, which we believe could be taking place in many other bacterial plant diseases.
Collapse
Affiliation(s)
- Roberto Buonaurio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Roberto Buonaurio, Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Via Borgo XX Giugno, 74 06121 Perugia, Italy,
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | | | - Chiara Cortese
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Draft Genome Sequence of Erwinia oleae, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. savastanoi. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01308-14. [PMID: 25502684 PMCID: PMC4263846 DOI: 10.1128/genomea.01308-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Erwinia oleae is a nonpathogenic bacterial species isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. Since the presence of E. oleae in the knots increases disease severity, interspecies interactions with the pathogen are hypothesized. Here, we report the first draft genome sequence of the E. oleae type strain.
Collapse
|
8
|
Passos da Silva D, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C, Venturi V. Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology (Reading) 2014; 160:556-566. [DOI: 10.1099/mic.0.074468-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although the great majority of bacteria found in nature live in multispecies communities, microbiological studies have focused historically on single species or competition and antagonism experiments between different species. Future directions need to focus much more on microbial communities in order to better understand what is happening in the wild. We are using olive knot disease as a model to study the role and interaction of multispecies bacterial communities in disease establishment/development. In the olive knot, non-pathogenic bacterial species (e.g. Erwinia toletana) co-exist with the pathogen (Pseudomonas savastanoi pv. savastanoi); we have demonstrated cooperation among these two species via quorum sensing (QS) signal sharing. The outcome of this interaction is a more aggressive disease when co-inoculations are made compared with single inoculations. In planta experiments show that these two species co-localize in the olive knot, and this close proximity most probably facilitates exchange of QS signals and metabolites. In silico recreation of their metabolic pathways showed that they could have complementing pathways also implicating sharing of metabolites. Our microbiome studies of nine olive knot samples have shown that the olive knot community possesses great bacterial diversity; however. the presence of five genera (i.e. Pseudomonas, Pantoea, Curtobacterium, Pectobacterium and Erwinia) can be found in almost all samples.
Collapse
Affiliation(s)
| | - Maria Pilar Castañeda-Ojeda
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studio di Perugia, Perugia, Italy
| | - Roberto Buonaurio
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studio di Perugia, Perugia, Italy
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|