1
|
Prithvisagar KS, Krishna Kumar B, Kodama T, Rai P, Iida T, Karunasagar I, Karunasagar I. Whole genome analysis unveils genetic diversity and potential virulence determinants in Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Virulence 2021; 12:1936-1949. [PMID: 34415829 PMCID: PMC8381830 DOI: 10.1080/21505594.2021.1947448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus has caused widespread mortality in Indian shrimp aquaculture in recent years. However, there are insufficient genome data for the isolates from Indian shrimp vibriosis to analyze genetic diversity and track the acquisition of genetic features that could be involved in virulence and fitness. In this study, we have performed genome analysis of V. parahaemolyticus isolated from moribund shrimps collected from shrimp farms along coastal Karnataka, India, for better understanding of their diversity and virulence. Five newly sequenced genomes of V. parahaemolyticus along with 40 genomes retrieved from NCBI were subjected to comparative genome analysis. The sequenced genomes had an overall genome size of 5.2 Mb. MLST analysis and core genome phylogenomic analysis revealed considerable genetic diversity among the isolates obtained from the moribund shrimps. Interestingly, none of the V. parahaemolyticus isolates possessed the classical features (PirAB) of the strains associated with Acute Hepatopancreatic Necrosis Disease (AHPND). This study also revealed the presence of multiple virulence attributes, including ZOT, ACE and RTX toxins, secretion systems, and mobile genetic elements. The findings of this study provide insights into the possible transition of an environmental V. parahaemolyticus to emerge as pathogens of aquaculture species by increasing its virulence and host adaptation. Future studies focusing on continuous genomic surveillance of V. parahaemolyticus are required to study the evolution and transmission of new variants in shrimp aquaculture, as well as to design and implement biosecurity programs to prevent disease outbreaks.
Collapse
Affiliation(s)
- Kattapuni Suresh Prithvisagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki Japan
| | - Praveen Rai
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Tetsuya Iida
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Iddya Karunasagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| |
Collapse
|
2
|
A Highly Promiscuous Integron, Plasmids, Extended Spectrum Beta Lactamases and Efflux Pumps as Factors Governing Multidrug Resistance in a Highly Drug Resistant Vibrio fluvialis Isolate BD146 from Kolkata, India. Indian J Microbiol 2017; 58:60-67. [PMID: 29434398 DOI: 10.1007/s12088-017-0687-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
In an earlier study from this laboratory, Vibrio fluvialis BD146, a clinical isolate from Kolkata, India, 2002, was found to be resistant to all the fourteen antibiotics tested. It harboured a high copy number plasmid pBD146 and a low copy number plasmid. In the present study, a more detailed analysis was carried out to unravel different resistance mechanisms in this isolate. Sequencing showed that variable region of class 1 integron located on low copy number plasmid harbored arr3-cmlA-blaOXA10-aadA1 gene cassettes. Analysis for extended spectrum beta lactamases (ESBLs) revealed that BD146 was ESBL positive. Efflux pumps were involved in the drug resistance phenotype for chloramphenicol, kanamycin, streptomycin and tetracycline. Sequence analysis of pBD146 revealed the presence of genes encoding BDint an integrase with a unique sequence having little similarity to other known integrases, toxin-antitoxin (parE/parD), a replicase, trimethoprim resistance (dfrVI) and quinolone resistance (qnrVC5). Presence of cmlA, putative novel integrase and toxin-antitoxin system in V. fluvialis has been documented for the first time in this report. pBD146 showed 99% sequence similarity with pVN84 from V. cholerae O1 of Vietnam, 2004 and a plasmid from V. parahaemolyticus v110 of Hong Kong, 2010. Conjugation experiments proved the ability of pBD146 and the low copy number plasmid, to get transferred to another host imparting their antibiotic resistance traits to the transconjugants. Therefore, present study has indicated that plasmids played an important role for dissemination of drug resistance.
Collapse
|
3
|
Vinothkumar K, Kumar GN, Bhardwaj AK. Characterization of Vibrio fluvialis qnrVC5 Gene in Native and Heterologous Hosts: Synergy of qnrVC5 with other Determinants in Conferring Quinolone Resistance. Front Microbiol 2016; 7:146. [PMID: 26913027 PMCID: PMC4753295 DOI: 10.3389/fmicb.2016.00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 12/02/2022] Open
Abstract
Resistance of various pathogens toward quinolones has emerged as a serious threat to combat infections. Analysis of plethora of genes and resistance mechanisms associated with quinolone resistance reveals chromosome-borne and transferable determinants. qnr genes have been found to be responsible for transferable quinolone resistance. In the present work, a new allele qnrVC5 earlier reported in Vibrio fluvialis from this laboratory was characterized in detail for its sequence, genetic context and propensity to decrease the susceptibility for quinolones. The study has revealed persistence of qnrVC5 in clinical isolates of V. fluvialis from Kolkata region through the years 2002–2006. qnrVC5 existed in the form of a gene cassette with the open reading frame being flanked by an upstream promoter and a downstream V. cholerae repeat region suggestive of its superintegron origin. Sequence analysis of different qnrVC alleles showed that qnrVC5 was closely related to qnrVC2 and qnrVC4 and these alleles were associated with V. cholerae repeats. In contrast, qnrVC1, qnrVC3, and qnrVC6 belonging to another group were associated with V. parahaemolyticus repeats. The gene manifested its activity in native V. fluvialis host as well as in Escherichia coli transformants harboring it by elevating the MIC toward various quinolones by twofold to eightfold. In combination with other quinolone resistance factors such as topoisomerase mutations and aac(6’)-Ib-cr gene, qnrVC5 gene product contributed toward higher quinolone resistance displayed by V. fluvialis isolates. Silencing of the gene using antisense peptide nucleic acid sensitized the V. fluvialis parent isolates toward ciprofloxacin. Recombinant QnrVC5 vividly demonstrated its role in conferring quinolone resistance. qnrVC5 gene, its synergistic effect and global dissemination should be perceived as a menace for quinolone-based therapies.
Collapse
Affiliation(s)
- Kittappa Vinothkumar
- Molecular Biology of Diseases, Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced ResearchGandhinagar, India; Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of BarodaVadodara, India
| | - G N Kumar
- Department of Bio-Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, India
| | - Ashima K Bhardwaj
- Molecular Biology of Diseases, Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research Gandhinagar, India
| |
Collapse
|
4
|
Genomic Features of Environmental and Clinical Vibrio parahaemolyticus Isolates Lacking Recognized Virulence Factors Are Dissimilar. Appl Environ Microbiol 2015; 82:1102-1113. [PMID: 26637607 DOI: 10.1128/aem.03465-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/25/2015] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a bacterial pathogen that can cause illness after the consumption or handling of contaminated seafood. The primary virulence factors associated with V. parahaemolyticus illness are thermostable direct hemolysin (TDH) and Tdh-related hemolysin (TRH). However, clinical strains lacking tdh and trh have recently been isolated, and these clinical isolates are poorly understood. To help understand the emergence of clinical tdh- and trh-negative isolates, a genomic approach was used to comprehensively compare 4 clinical tdh- and trh-negative isolates with 16 environmental tdh- and trh-negative isolates and 34 clinical isolates positive for tdh or trh, or both, with the objective of identifying genomic features that are unique to clinical tdh- and trh-negative isolates. The prevalence of pathogenicity islands (PAIs) common to clinical isolates was thoroughly examined in each of the clinical tdh- and trh-negative isolates. The tdh PAI was not present in any clinical or environmental tdh- and trh-negative isolates. The trh PAI was not present in any environmental isolates; however, in clinical tdh- and trh-negative isolate 10-4238, the majority of the trh PAI including a partial trh1 gene was present, which resulted in reclassification of this isolate as a tdh-negative and trh-positive isolate. In the other clinical tdh- and trh-negative isolates, neither the trh gene nor the trh PAI was present. We identified 862 genes in clinical tdh- and trh-negative isolates but not in environmental tdh- and trh-negative isolates. Many of these genes are highly homologous to genes found in common enteric bacteria and included genes encoding a number of chemotaxis proteins and a novel putative type VI secretion system (T6SS) effector and immunity protein (T6SS1). The availability of genome sequences from clinical V. parahaemolyticus tdh- and trh-negative isolates and the comparative analysis may help provide an understanding of how this pathotype is able to survive in vivo during clinical illness.
Collapse
|
5
|
CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob Agents Chemother 2015; 59:3593-5. [PMID: 25801555 DOI: 10.1128/aac.00047-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is commonly resistant to ampicillin, yet the mechanisms underlying this phenomenon are not clear. In this study, a novel class A carbenicillin-hydrolyzing β-lactamase (CARB) family of β-lactamases, bla(CARB-17), was identified and found to be responsible for the intrinsic penicillin resistance in V. parahaemolyticus. Importantly, bla(CARB-17)-like genes were present in all 293 V. parahaemolyticus genome sequences available in GenBank and detectable in all 91 V. parahaemolyticus food isolates, further confirming the intrinsic nature of this gene.
Collapse
|
6
|
Haendiges J, Timme R, Allard MW, Myers RA, Brown EW, Gonzalez-Escalona N. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012-2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis. Front Microbiol 2015; 6:125. [PMID: 25745421 PMCID: PMC4333860 DOI: 10.3389/fmicb.2015.00125] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012-2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.
Collapse
Affiliation(s)
| | - Ruth Timme
- Center for Food and Applied Nutrition, Food and Drug Administration College Park, MD, USA
| | - Marc W Allard
- Center for Food and Applied Nutrition, Food and Drug Administration College Park, MD, USA
| | - Robert A Myers
- Department of Health and Mental Hygiene Baltimore, MD, USA
| | - Eric W Brown
- Center for Food and Applied Nutrition, Food and Drug Administration College Park, MD, USA
| | | |
Collapse
|
7
|
Li L, Wong HC, Nong W, Cheung MK, Law PTW, Kam KM, Kwan HS. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics 2014; 15:1135. [PMID: 25518728 PMCID: PMC4320434 DOI: 10.1186/1471-2164-15-1135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before. RESULTS Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium. CONCLUSIONS We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
8
|
Yingkajorn M, Mitraparp-Arthorn P, Nuanualsuwan S, Poomwised R, Kongchuay N, Khamhaeng N, Vuddhakul V. Prevalence and quantification of pathogenic Vibrio parahaemolyticus during shrimp culture in Thailand. DISEASES OF AQUATIC ORGANISMS 2014; 112:103-11. [PMID: 25449321 DOI: 10.3354/dao02800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus is a major cause of seafood-borne gastroenteritis. The human pathogenic strains possess tdh or trh or both genes. In Thai shrimp farming, the level of pathogenic V. parahaemolyticus contamination has not been completely characterized, although it has been identified as a risk for people who consume undercooked shrimp. In this study, the prevalence and concentration of V. parahaemolyticus (total Vp) and pathogenic V. parahaemolyticus (tdh+ Vp and trh+ Vp) were investigated during shrimp culture cycles using the most probable number (MPN) method and were confirmed by PCR and the loop-mediated isothermal amplification (LAMP) techniques. The prevalence and concentration of total Vp were high in broodstock and egg samples at the start of the hatchery cycle, but the organism decreased in the subsequent larval and postlarval stages. In contrast, total Vp was low at the beginning of the pond cycle and dramatically increased during the later stages of culture. Broodstock and fresh feed were important sources of V. parahaemolyticus. Numbers of tdh+ Vp and trh+ Vp detected by the LAMP technique were much greater than those detected by the PCR technique, especially in the late stages of the pond cycle. A direct correlation between total Vp and pathogenic Vp was demonstrated only during the harvest stage. This study will be useful as a guideline to establish levels of V. parahaemolyticus presence which can be considered as safe during shrimp culture. In addition, it could be used to identify the source of V. parahaemolyticus, which has recently been reported to be one of the etiologic agents of acute hepatopancreatic necrosis disease.
Collapse
Affiliation(s)
- Mingkwan Yingkajorn
- Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Department of Biomedical Science, Faculty of Medicine, and Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | | | | | | | | | | |
Collapse
|
9
|
Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol 2013; 3:97. [PMID: 24377090 PMCID: PMC3858888 DOI: 10.3389/fcimb.2013.00097] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/23/2013] [Indexed: 12/18/2022] Open
Abstract
Vibrio parahaemolyticus, autochthonous to estuarine, marine, and coastal environments throughout the world, is the causative agent of food-borne gastroenteritis. More than 80 serotypes have been described worldwide, based on antigenic properties of the somatic (O) and capsular (K) antigens. Serovar O3:K6 emerged in India in 1996 and subsequently was isolated worldwide, leading to the conclusion that the first V. parahaemolyticus pandemic had taken place. Most strains of V. parahaemolyticus isolated from the environment or seafood, in contrast to clinical strains, do not produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). Type 3 secretion systems (T3SSs), needle-like apparatuses able to deliver bacterial effectors into host cytoplasm, were identified as triggering cytotoxicity and enterotoxicity. Type 6 secretion systems (T6SS) predicted to be involved in intracellular trafficking and vesicular transport appear to play a role in V. parahaemolyticus virulence. Recent advances in V. parahaemolyticus genomics identified several pathogenicity islands (VpaIs) located on either chromosome in both epidemic and pandemic strains and comprising additional colonization factors, such as restriction-modification complexes, chemotaxis proteins, classical bacterial surface virulence factors, and putative colicins. Furthermore, studies indicate strains lacking toxins and genomic regions associated with pathogenicity may also be pathogenic, suggesting other important virulence factors remain to be identified. The unique repertoire of virulence factors identified to date, their occurrence and distribution in both epidemic and pandemic strains worldwide are described, with the aim of highlighting the complexity of V. parahaemolyticus pathogenicity as well as its dynamic genome.
Collapse
Affiliation(s)
- Daniela Ceccarelli
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Nur A Hasan
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; CosmosID Inc. College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; Maryland Institute of Applied Environmental Health, University of Maryland College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA ; CosmosID Inc. College Park, MD, USA ; Maryland Institute of Applied Environmental Health, University of Maryland College Park, MD, USA ; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|