1
|
Mefferd CC, Zhou E, Seymour CO, Bernardo NA, Srivastava S, Bengtson AJ, Jiao JY, Dong H, Li WJ, Hedlund BP. Incomplete denitrification phenotypes in diverse Thermus species from diverse geothermal spring sediments and adjacent soils in southwest China. Extremophiles 2022; 26:23. [PMID: 35802188 PMCID: PMC9270275 DOI: 10.1007/s00792-022-01272-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
A few members of the bacterial genus Thermus have been shown to be incomplete denitrifiers, terminating with nitrite (NO2-) or nitrous oxide (N2O). However, the denitrification abilities of the genus as a whole remain poorly characterized. Here, we describe diverse denitrification phenotypes and genotypes of a collection of 24 strains representing ten species, all isolated from a variety of geothermal systems in China. Confirmed terminal products of nitrate reduction were nitrite or N2O, while nitric oxide (NO) was inferred as the terminal product in some strains. Most strains produced N2O; complete denitrification was not observed. Denitrification phenotypes were largely consistent with the presence of denitrification genes, and strains of the same species often had the same denitrification phenotypes and largely syntenous denitrification gene clusters. Genes for nirS and nirK coexisted in three Thermus brockianus and three Thermus oshimai genomes, which is a unique hallmark of some denitrifying Thermus strains and may be ecologically important. These results show that incomplete denitrification phenotypes are prominent, but variable, within and between Thermus species. The incomplete denitrification phenotypes described here suggest Thermus species may play important roles in consortial denitrification in high-temperature terrestrial biotopes where sufficient supply of oxidized inorganic nitrogen exists.
Collapse
Affiliation(s)
| | - Enmin Zhou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- School of Earth Sciences, Yunnan University, Kunming, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Noel A Bernardo
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Shreya Srivastava
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Las Vegas, NV, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Jiao J, Lian Z, Li M, Salam N, Zhou E, Liu L, Ming H, Nie G, Shu W, Zhao G, Hedlund BP, Li W. Comparative genomic analysis of Thermus provides insights into the evolutionary history of an incomplete denitrification pathway. MLIFE 2022; 1:198-209. [PMID: 38817678 PMCID: PMC10989939 DOI: 10.1002/mlf2.12009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/25/2021] [Accepted: 01/08/2022] [Indexed: 06/01/2024]
Abstract
Biological denitrification is a crucial process in the nitrogen biogeochemical cycle, and Thermus has been reported to be a significant heterotrophic denitrifier in terrestrial geothermal environments. However, neither the denitrification potential nor the evolutionary history of denitrification genes in the genus Thermus or phylum Deinococcota is well understood. Here, we performed a comparative analysis of 23 Thermus genomes and identified denitrification genes in 15 Thermus strains. We confirmed that Thermus harbors an incomplete denitrification pathway as none of the strains contain the nosZ gene. Ancestral character state reconstructions and phylogenetic analyses showed that narG, nirS, and norB genes were acquired by the last common ancestor of Thermales and were inherited vertically. In contrast, nirK of Thermales was acquired via two distinct horizontal gene transfers from Proteobacteria to the genus Caldithermus and from an unknown donor to the common ancestor of all known Thermus species except Thermus filiformis. This study expands our understanding of the genomic potential for incomplete denitrification in Thermus, revealing a largely vertical evolutionary history of the denitrification pathway in the Thermaceae, and supporting the important role for Thermus as an important heterotrophic denitrifier in geothermal environments.
Collapse
Affiliation(s)
- Jian‐Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zheng‐Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Meng‐Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - En‐Min Zhou
- International Joint Research Center for Karstology, School of Earth SciencesYunnan UniversityKunmingChina
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Hong Ming
- Synthetic Biology Engineering Laboratory of Henan Province, College of Life Sciences and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Guoxing Nie
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Wensheng Shu
- Institute of Ecological Science, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Guoping Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Brian P. Hedlund
- School of Life SciencesUniversity of NevadaLas VegasNevadaUSA
- Nevada Institute of Personalized MedicineUniversity of NevadaLas VegasNevadaUSA
| | - Wen‐Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina.
| |
Collapse
|
3
|
Zhou EM, Adegboruwa AL, Mefferd CC, Bhute SS, Murugapiran SK, Dodsworth JA, Thomas SC, Bengtson AJ, Liu L, Xian WD, Li WJ, Hedlund BP. Diverse respiratory capacity among Thermus strains from US Great Basin hot springs. Extremophiles 2019; 24:71-80. [PMID: 31535211 DOI: 10.1007/s00792-019-01131-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
Abstract
Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0-3.5% of sequences and were predominately Thermus thermophilus. 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.
Collapse
Affiliation(s)
- En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan University, Kunming, 650091, People's Republic of China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | - Shrikant S Bhute
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Scott C Thomas
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda J Bengtson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- SWCA Environmental Consultants, Reno, NV, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
4
|
Tripathi C, Mishra H, Khurana H, Dwivedi V, Kamra K, Negi RK, Lal R. Complete Genome Analysis of Thermus parvatiensis and Comparative Genomics of Thermus spp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes. Front Microbiol 2017; 8:1410. [PMID: 28798737 PMCID: PMC5529391 DOI: 10.3389/fmicb.2017.01410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis. We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.
Collapse
Affiliation(s)
- Charu Tripathi
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Himani Khurana
- Department of Zoology, University of DelhiNew Delhi, India
| | | | - Komal Kamra
- Ciliate Biology Laboratory, Sri Guru Tegh Bahadar Khalsa College, University of DelhiNew Delhi, India
| | - Ram K Negi
- Department of Zoology, University of DelhiNew Delhi, India
| | - Rup Lal
- Department of Zoology, University of DelhiNew Delhi, India
| |
Collapse
|