1
|
Phillips EK, Cannon JA, Zhou Y, Bonifer KS, Reynolds TB. Conjugation-Mediated Plasmid Transfer Enables Genetic Modification of Diverse Bacillus Species. Microbiol Spectr 2023; 11:e0370022. [PMID: 36975796 PMCID: PMC10101014 DOI: 10.1128/spectrum.03700-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Performing genetic manipulations in Bacillus strains is often hindered by difficulty in identifying conditions appropriate for DNA uptake. This shortcoming limits our understanding of the functional diversity within this genus and the practical application of new strains. We have developed a simple method for increasing the genetic tractability of Bacillus spp. through conjugation-mediated plasmid transfer via a diaminopimelic acid (DAP) auxotrophic Escherichia coli donor strain. We observe transfer into representatives of the Bacillus clades subtilis, cereus, galactosidilyticus, and Priestia megaterium and successfully applied this protocol to 9 out of 12 strains attempted. We utilized the BioBrick 2.0 plasmids pECE743 and pECE750, as well as the CRISPR plasmid pJOE9734.1, to generate a xylose-inducible green-fluorescent protein (GFP)-expressing conjugal vector, pEP011. The use of xylose-inducible GFP ensures ease of confirming transconjugants, which enables users to quickly rule out false positives. Additionally, our plasmid backbone offers the flexibility to be used in other contexts, including transcriptional fusions and overexpression, with only a few modifications. IMPORTANCE Bacillus species are widely used to produce proteins and to understand microbial differentiation. Unfortunately, outside a few lab strains, genetic manipulation is difficult and can prevent thorough dissection of useful phenotypes. We developed a protocol that utilizes conjugation (plasmids that initiate their own transfer) to introduce plasmids into a diverse range of Bacillus spp. This will facilitate a deeper study of wild isolates for both industrial and pure research uses.
Collapse
Affiliation(s)
- Elise K. Phillips
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Jordan A. Cannon
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Kyle S. Bonifer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Wang Q, Zhang L, Zhang Y, Chen H, Song J, Lyu M, Chen R, Zhang L. Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7. Front Microbiol 2022; 13:1008648. [PMID: 36419435 PMCID: PMC9677121 DOI: 10.3389/fmicb.2022.1008648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.
Collapse
Affiliation(s)
- Qian Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yiju Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianghua Song
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lixin Zhang,
| |
Collapse
|
3
|
Liu G, Jiang YM, Liu YC, Han LL, Feng H. A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression. Appl Microbiol Biotechnol 2020; 104:3445-3457. [PMID: 32088759 DOI: 10.1007/s00253-020-10475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023]
Abstract
Single-molecule real-time (SMRT) sequencing can be used to identify a wide variety of chemical modifications of the genome, such as methylation. Here, we applied this approach to identify N6-methyl-adenine (m6A) and N4-methyl-cytosine (m4C) modification in the genome of Bacillus pumilus BA06. A typical methylation recognition motif of the type I restriction-modification system (R-M), 5'-TCm6AN8TTGG-3'/3'-AGTN8m6AACC-5', was identified. We confirmed that this motif was a new type I methylation site using REBASE analysis and that it was recognized by a type I R-M system, Bpu6ORFCP, according to methylation sensitivity assays in vivo and vitro. Furthermore, we found that deletion of the R-M system Bpu6ORFCP induced transcriptional changes in many genes and led to increased gene expression in pathways related to ABC transporters, sulfur metabolism, ribosomes, cysteine and methionine metabolism and starch and sucrose metabolism, suggesting that the R-M system in B. pumilus BA06 has other significant biological functions beyond protecting the B. pumilus BA06 genome from foreign DNA.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yang-Mei Jiang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yong-Cheng Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Kilic T, Coleri Cihan A. Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Okazaki S, Sano N, Yamada T, Ishii K, Kojima K, Djedidi S, Artigas Ramírez MD, Yuan K, Kanekatsu M, Ohkama-Ohtsu N, Hirose Y, Oshima K, Hattori M, Yokoyama T. Complete Genome Sequence of Plant Growth-Promoting Bacillus pumilus TUAT1. Microbiol Resour Announc 2019; 8:e00076-19. [PMID: 31123011 PMCID: PMC6533381 DOI: 10.1128/mra.00076-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
Bacillus pumilus TUAT1 was isolated from soil in a university research field. Strain TUAT1 has the ability to promote the growth of plants, including that of rice, and has been commercialized as a biofertilizer. Here, we sequenced and annotated the genome of TUAT1 to understand the molecular mechanisms underlying its plant growth promotion.
Collapse
Affiliation(s)
- Shin Okazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoto Sano
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Yamada
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuo Ishii
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuhiro Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Salem Djedidi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - María D Artigas Ramírez
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kun Yuan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Motoki Kanekatsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi, Japan
| | - Kenshiro Oshima
- Center of Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Masahira Hattori
- Center of Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Li R, Zhou X, Liu D, Feng W. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase. Free Radic Biol Med 2018; 129:138-145. [PMID: 30227270 DOI: 10.1016/j.freeradbiomed.2018.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Dismutation of superoxide by superoxide dismutase (SOD) generates hydrogen peroxide, which may be reduced to hydroxyl radical. The generated H2O2 during the catalysis can have an oxidative damage to SOD. Hydrogen peroxide decomposition by catalase (CAT) can help circumvent the problem. Mn-superoxide dismutase (herein referred to as SOD) and CAT are dimeric and tetrameric proteins, respectively. Herein, through intein-mediated in vivo subunit splicing, the C-terminus of the CAT subunit (CATS) has been specifically ligated to the N-terminus of the SOD subunit (SODS) with a peptide bond. Thus, the splicing product SOD&CAT combines the superoxide anion (•O2-) scavenging ability and the ability of decomposing H2O2. The in vivo subunit splicing has little effect on the secondary structures of the enzymes as confirmed by circular dichroism (CD) spectra. Fluorescence spectra showed that the splicing product SOD&CAT has a higher stability than SOD. In the splicing product SOD&CAT, the SOD subunits are in close proximity to the CAT subunits, facilitating immediate transfer of H2O2 between the enzymes and enabling efficient decomposition of H2O2. SOD&CAT exhibited a superoxide anion (•O2-) scavenging ability 244% higher than that of SOD and 46% higher than that of the mixed enzymes SOD+CAT.
Collapse
Affiliation(s)
- Rong Li
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqi Zhou
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Liu
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genomics 2016; 16:557-66. [DOI: 10.1007/s10142-016-0506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
8
|
Stepanov VG, Tirumalai MR, Montazari S, Checinska A, Venkateswaran K, Fox GE. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation. PLoS One 2016; 11:e0157331. [PMID: 27351589 PMCID: PMC4924849 DOI: 10.1371/journal.pone.0157331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022] Open
Abstract
Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains.
Collapse
Affiliation(s)
- Victor G. Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Saied Montazari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Aleksandra Checinska
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yuan Y, Gao M. Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy. Sci Rep 2015; 5:10259. [PMID: 25989507 PMCID: PMC4437294 DOI: 10.1038/srep10259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Bacillus pumilus has been widely identified as a pathogen of plant and human, while the genetic information is rarely available for pathogenic B. pumilus strains. B. pumilus GR8 is a pathogen that causes ginger rhizome rot disease by invading ginger rhizome parenchymatous tissues, growing in the extracellular space, and producing plant cell wall-degrading enzymes to destroy ginger cells. In this study, the genome of GR8 was sequenced and characterized. This genome was the third completely sequenced genome of the B. pumilus species, and it exhibited high similarity to the genome of the B. pumilus strain B6033. The genome of GR8 was 3.67 Mb in length and encoded 3,713 putative ORFs. Among these predicted proteins, numerous plant cell wall-degrading enzymes and several proteins associated with invading and adapting to the environment in the extracellular space of the ginger rhizome parenchymatous tissue were found. The GR8 genome contained only one restriction-modification system and no CRISPR/Cas system. The lack of phage-resistant system suggested that phages might be potential agents for the control of GR8. The genomic analysis of GR8 provided the understanding to the pathogenesis and the phage-control strategy of pathogenic B. pumilus strains.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
10
|
Loewen PC, Villanueva J, Switala J, Donald LJ, Ivancich A. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy. Proteins 2015; 83:853-66. [PMID: 25663126 DOI: 10.1002/prot.24777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.
Collapse
Affiliation(s)
- Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | | | |
Collapse
|