1
|
Cho A, Finke JF, Zhong KX, Chan AM, Saunders R, Schulze A, Warne S, Miller KM, Suttle CA. The core microbiome of cultured Pacific oyster spat is affected by age but not mortality. Microbiol Spectr 2024; 12:e0003124. [PMID: 39162495 PMCID: PMC11448229 DOI: 10.1128/spectrum.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.
Collapse
Affiliation(s)
- Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F Finke
- Hakai Institute, Heriot Bay, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin X Zhong
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
3
|
Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. The Pathobiome in Animal and Plant Diseases. Trends Ecol Evol 2019; 34:996-1008. [PMID: 31522755 DOI: 10.1016/j.tree.2019.07.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
A growing awareness of the diversity and ubiquity of microbes (eukaryotes, prokaryotes, and viruses) associated with larger 'host' organisms has led to the realisation that many diseases thought to be caused by one primary agent are the result of interactions between multiple taxa and the host. Even where a primary agent can be identified, its effect is often moderated by other symbionts. Therefore, the one pathogen-one disease paradigm is shifting towards the pathobiome concept, integrating the interaction of multiple symbionts, host, and environment in a new understanding of disease aetiology. Taxonomically, pathobiomes are variable across host species, ecology, tissue type, and time. Therefore, a more functionally driven understanding of pathobiotic systems is necessary, based on gene expression, metabolic interactions, and ecological processes.
Collapse
Affiliation(s)
- David Bass
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, The Nothe, Weymouth, DT4 8UB, UK; Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Charles R Tyler
- Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK; Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4HB, UK
| |
Collapse
|
4
|
Pierce ML, Ward JE. Microbial Ecology of the Bivalvia, with an Emphasis on the Family Ostreidae. JOURNAL OF SHELLFISH RESEARCH 2018; 37:793-806. [DOI: 10.2983/035.037.0410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Melissa L. Pierce
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - J. Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340
| |
Collapse
|