1
|
Hunt EA, Tamanaha E, Bonanno K, Cantor EJ, Tanner NA. Profiling Thermus thermophilus Argonaute Guide DNA Sequence Preferences by Functional Screening. Front Mol Biosci 2021; 8:670940. [PMID: 33996915 PMCID: PMC8118625 DOI: 10.3389/fmolb.2021.670940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic Argonautes (pAgo) are an increasingly well-studied class of guided endonucleases, and the underlying mechanisms by which pAgo generate nucleic acid guides in vivo remains an important topic of investigation. Recent insights into these mechanisms for the Argonaute protein from Thermus thermophilus has drawn attention to global sequence and structural feature preferences involved in oligonucleotide guide selection. In this work, we approach the study of guide sequence preferences in T. thermophilus Argonaute from a functional perspective. Screening a library of 1,968 guides against randomized single- and double-stranded DNA substrates, endonuclease activity associated with each guide was quantified using high-throughput capillary electrophoresis, and localized sequence preferences were identified which can be used to improve guide design for molecular applications. The most notable preferences include: a strong cleavage enhancement from a first position dT independent of target sequence; a significant decrease in activity with dA at position 12; and an impact of GC dinucleotides at positions 10 and 11. While this method has been useful in characterizing unique preferences of T. thermophilus Argonaute and criteria for creating efficient guides, it could be expanded further to rapidly characterize more recent mesophilic variants reported in the literature and drive their utility toward molecular tools in biology and genome editing applications.
Collapse
Affiliation(s)
- Eric A Hunt
- Applications and Product Development, New England Biolabs, Ipswich, MA, United States
| | - Esta Tamanaha
- Research, New England Biolabs, Ipswich, MA, United States
| | - Kevin Bonanno
- Research, New England Biolabs, Ipswich, MA, United States
| | - Eric J Cantor
- Applications and Product Development, New England Biolabs, Ipswich, MA, United States
| | | |
Collapse
|
2
|
Loderer C, Holmfeldt K, Lundin D. Non-host class II ribonucleotide reductase in Thermus viruses: sequence adaptation and host interaction. PeerJ 2019; 7:e6700. [PMID: 30993041 PMCID: PMC6459318 DOI: 10.7717/peerj.6700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 01/14/2023] Open
Abstract
Ribonucleotide reductases (RNR) are essential enzymes for all known life forms. Their current taxonomic distribution suggests extensive horizontal gene transfer e.g., by processes involving viruses. To improve our understanding of the underlying processes, we characterized a monomeric class II RNR (NrdJm) enzyme from a Thermus virus, a subclass not present in any sequenced Thermus spp. genome. Phylogenetic analysis revealed a distant origin of the nrdJm gene with the most closely related sequences found in mesophiles or moderate thermophiles from the Firmicutes phylum. GC-content, codon usage and the ratio of coding to non-coding substitutions (dN/dS) suggest extensive adaptation of the gene in the virus in terms of nucleotide composition and amino acid sequence. The NrdJm enzyme is a monomeric B12-dependent RNR with nucleoside triphosphate specificity. It exhibits a temperature optimum at 60–70 °C, which is in the range of the growth optimum of Thermus spp. Experiments in combination with the Thermus thermophilus thioredoxin system show that the enzyme is able to retrieve electrons from the host NADPH pool via host thioredoxin and thioredoxin reductases. This is different from other characterized viral RNRs such as T4 phage RNR, where a viral thioredoxin is present. We hence show that the monomeric class II RNR, present in Thermus viruses, was likely transferred from an organism phylogenetically distant from the one they were isolated from, and adapted to the new host in genetic signature and amino acids sequence.
Collapse
Affiliation(s)
- Christoph Loderer
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Liu T, Zhu L, Zhang Z, Huang H, Zhang Z, Jiang L. Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Sci Rep 2017; 7:17586. [PMID: 29242620 PMCID: PMC5730648 DOI: 10.1038/s41598-017-15489-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022] Open
Abstract
An isolated black yeast-like strain was obtained from radiation-polluted soil collected from Xinjiang province in northwest China. On the basis of ITS and LSU rDNA sequence analysis, in combination with the colony morphology and phenotypic properties, the isolated strain was revealed to represent a novel variety of Aureobasidium subglaciale, designated as A. subglaciale F134. Compared to other yeasts and bacteria, this isolate displayed superior resistance to gamma irradiation, UV light, and heavy metal ions. It was discovered that the resistance of the isolate was correlated with the stress protector trehalose. Through the overexpression of the trehalose-6-phosphate synthase gene tps1 and the deletion of acid trehalase gene ath1, the APT∆A double mutant exhibited a survival rate of 1% under 20 kGy of gamma-radiation, 2% survival rate at a UV dosage of 250 J/m2, and tolerance towards Pb2+ as high as 1500 mg/L, which was in agreement with the high accumulation of intracellular trehalose compared to the wild-type strain. Finally, the protective effects and the mechanism of trehalose accumulation in A. subglaciale F134 were investigated, revealing a significant activation of the expression of many of the stress tolerance genes, offering new perspectives on the adaptations of radioresistant microorganisms.
Collapse
Affiliation(s)
- Tingting Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 210009, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiping Zhang
- Nanjing Beishengrong Energy Technology Co. Ltd, Nanjing, 210009, People's Republic of China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uigur Autonomous Region, People's Republic of China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Brumm PJ, Monsma S, Keough B, Jasinovica S, Ferguson E, Schoenfeld T, Lodes M, Mead DA. Complete Genome Sequence of Thermus aquaticus Y51MC23. PLoS One 2015; 10:e0138674. [PMID: 26465632 PMCID: PMC4605624 DOI: 10.1371/journal.pone.0138674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022] Open
Abstract
Thermus aquaticus Y51MC23 was isolated from a boiling spring in the Lower Geyser Basin of Yellowstone National Park. Remarkably, this T. aquaticus strain is able to grow anaerobically and produces multiple morphological forms. Y51MC23 is a Gram-negative, rod-shaped organism that grows well between 50°C and 80°C with maximum growth rate at 65°C to 70°C. Growth studies suggest that Y51MC23 primarily scavenges protein from the environment, supported by the high number of secreted and intracellular proteases and peptidases as well as transporter systems for amino acids and peptides. The genome was assembled de novo using a 350 bp fragment library (paired end sequencing) and an 8 kb long span mate pair library. A closed and finished genome was obtained consisting of a single chromosome of 2.15 Mb and four plasmids of 11, 14, 70, and 79 kb. Unlike other Thermus species, functions usually found on megaplasmids were identified on the chromosome. The Y51MC23 genome contains two full and two partial prophage as well as numerous CRISPR loci. The high identity and synteny between Y51MC23 prophage 2 and that of Thermus sp. 2.9 is interesting, given the 8,800 km separation of the two hot springs from which they were isolated. The anaerobic lifestyle of Y51MC23 is complex, with multiple morphologies present in cultures. The use of fluorescence microscopy reveals new details about these unusual morphological features, including the presence of multiple types of large and small spheres, often forming a confluent layer of spheres. Many of the spheres appear to be formed not from cell envelope or outer membrane components as previously believed, but from a remodeled peptidoglycan cell wall. These complex morphological forms may serve multiple functions in the survival of the organism, including food and nucleic acid storage as well as colony attachment and organization.
Collapse
Affiliation(s)
- Phillip J. Brumm
- C5-6 Technologies LLC, Fitchburg, Wisconsin, United States of America
- * E-mail:
| | - Scott Monsma
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | - Brendan Keough
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | | | - Erin Ferguson
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | | | - Michael Lodes
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| | - David A. Mead
- Lucigen Corporation, Middleton, Wisconsin, United States of America
| |
Collapse
|
5
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|