1
|
Peng Z, Li M, Wang W, Liu H, Fanning S, Hu Y, Zhang J, Li F. Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale. Microbiologyopen 2017; 6. [PMID: 28799224 PMCID: PMC5727370 DOI: 10.1002/mbo3.514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin‐resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain‐specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding that suggests the carbohydrate utilization capacity of E. hirae R17 may be more extensive when compared with the other three bacterial species (spp.). Analysis of genomic islands and virulence genes highlighted the potential that horizontal gene transfer played as a contributor of variations in pathogenicity in this isolate. Drug‐resistance gene prediction and antibiotic susceptibility testing indicated E. hirae R17 was resistant to several antimicrobial compounds, including bacitracin, ciprofloxacin, daptomycin, erythromycin, and tetracycline, thereby limiting chemotherapeutic treatment options. Further, tolerance to biocides and metals may confer a phenotype that facilitates the survival and adaptation of this isolate against food preservatives, disinfectants, and antibacterial coatings. The genomic plasticity, mediated by IS elements, transposases, and tandem repeats, identified in the E. hirae R17 genome may support adaptation to new environmental niches, such as those that are found in hospitalized patients. A predicted transmissible plasmid, pRZ1, was found to carry several antimicrobial determinants, along with some predicted pathogenic genes. These data supported the previously determined phenotype confirming that the foodborne E. hirae R17 is a multidrug‐resistant pathogenic bacterium with evident genome plasticity and environmental adaptability.
Collapse
Affiliation(s)
- Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|