1
|
High-Quality Draft Genome Sequences of Four Lignocellulose-Degrading Bacteria Isolated from Puerto Rican Forest Soil: Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00300-17. [PMID: 28473393 PMCID: PMC5477197 DOI: 10.1128/genomea.00300-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the high-quality draft genome sequences of four phylogenetically diverse lignocellulose-degrading bacteria isolated from tropical soil (Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.) to elucidate the genetic basis of their ability to degrade lignocellulose. These isolates may provide novel enzymes for biofuel production.
Collapse
|
2
|
Everroad RC, Stuart RK, Bebout BM, Detweiler AM, Lee JZ, Woebken D, Prufert-Bebout L, Pett-Ridge J. Permanent draft genome of strain ESFC-1: ecological genomics of a newly discovered lineage of filamentous diazotrophic cyanobacteria. Stand Genomic Sci 2016; 11:53. [PMID: 27559430 PMCID: PMC4995827 DOI: 10.1186/s40793-016-0174-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 11/10/2022] Open
Abstract
The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.
Collapse
Affiliation(s)
- R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Rhona K. Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
| | - Angela M. Detweiler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Jackson Z. Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Current address: Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
3
|
Abstract
UNLABELLED Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of (13)C-labeled and (15)N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM. IMPORTANCE Cyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.
Collapse
|
4
|
Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME JOURNAL 2015; 10:1240-51. [PMID: 26495994 PMCID: PMC5029224 DOI: 10.1038/ismej.2015.180] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats.
Collapse
|
5
|
Woebken D, Burow LC, Behnam F, Mayali X, Schintlmeister A, Fleming ED, Prufert-Bebout L, Singer SW, Cortés AL, Hoehler TM, Pett-Ridge J, Spormann AM, Wagner M, Weber PK, Bebout BM. Revisiting N₂ fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. THE ISME JOURNAL 2015; 9:485-96. [PMID: 25303712 PMCID: PMC4303640 DOI: 10.1038/ismej.2014.144] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/15/2014] [Accepted: 06/29/2014] [Indexed: 11/09/2022]
Abstract
Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N₂ fixation. Dinitrogenase reductase (nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that both sulfate reducers and members of the Cyanobacteria contributed to N₂ fixation, whereas (15)N₂ tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of (15)N₂-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in (15)N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% (15)N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. Our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N₂ fixation in the intertidal mats, whereas support for significant N₂ fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found.
Collapse
Affiliation(s)
- Dagmar Woebken
- Departments of Chemical Engineering, and of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Luke C Burow
- Departments of Chemical Engineering, and of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - Faris Behnam
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Arno Schintlmeister
- Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Erich D Fleming
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Steven W Singer
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alejandro López Cortés
- Laboratory of Geomicrobiology and Biotechnology, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
| | - Tori M Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Alfred M Spormann
- Departments of Chemical Engineering, and of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna, Austria
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Brad M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|