1
|
Zou H, Ding Y, Shang J, Ma C, Li J, Yang Y, Cui X, Zhang J, Ji G, Wei Y. Isolation, characterization, and genomic analysis of a novel bacteriophage MA9V-1 infecting Chryseobacterium indologenes: a pathogen of Panax notoginseng root rot. Front Microbiol 2023; 14:1251211. [PMID: 37779709 PMCID: PMC10537231 DOI: 10.3389/fmicb.2023.1251211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Chryseobacterium indologenes is one of the primary causative agents of root rot of Panax notoginseng, which significantly affected plant growth and caused economic losses. With the increasing incidence of antibiotic-resistant bacterial phytopathogens, phage therapy has been garnered renewed attention in treating pathogenic bacteria. However, the therapeutic potential of phage therapy on root rot of P. notoginseng has not been evaluated. In this study, we isolated a novel lytic phage MA9V-1 infecting C. indologenes MA9 from sewage and monitored the formation of clear and round plaques with a diameter of approximately 0.5-1.5 mm. Phage MA9V-1 exhibited rapid absorption (>75% in 8 min), a latency period of 20 min, and a burst size of 10 particles per cell. Transmission electron microscopy indicated that the phage MA9V-1 is a new myovirus hosting C. indologenes MA9. Sequencing of phage genomes revealed that phage MA9V-1 contained a linear double-stranded DNA genome of 213,507 bp with 263 predicted open reading frames, including phage structure, host lysing, and DNA polymerase/helicase but no genes of tRNA, virulence, and antibiotic resistance. Our proteomic tree and genomic analysis revealed that phage MA9V-1 shares identity with Sphingomonas phage PAU and Tenacibaculum phage PTm1; however, they also showed apparent differences. Further systemic evaluation using phage therapy experiments on P. notoginseng suggested that phage MA9V-1 can be a potential candidate for effectively controlling C. indologenes MA9 infection. Thus, we have presented a novel approach to solving root rot in P. notoginseng.
Collapse
Affiliation(s)
- He Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yafang Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunlan Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinhua Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ye Yang
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinhao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guanghai Ji
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
Kawato Y, Istiqomah I, Gaafar AY, Hanaoka M, Ishimaru K, Yasuike M, Nishiki I, Nakamura Y, Fujiwara A, Nakai T. A novel jumbo Tenacibaculum maritimum lytic phage with head-fiber-like appendages. Arch Virol 2019; 165:303-311. [PMID: 31786689 DOI: 10.1007/s00705-019-04485-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/26/2019] [Indexed: 01/21/2023]
Abstract
A novel jumbo bacteriophage (myovirus) is described. The lytic phage of Tenacibaculum maritimum, which is the etiological agent of tenacibaculosis in a variety of farmed marine fish worldwide, was plaque-isolated from seawater around a fish aquaculture field in Japan. The phage had an isometric head 110-120 nm in diameter, from which several 50- to 100-nm-long flexible fiber-like appendages emanate, and a 150-nm-long rigid contractile tail. The full genomes of the two representative phages (PTm1 and PTm5) were 224,680 and 226,876 bp long, respectively, both with 29.7% GC content, and the number of predicted open reading frames (ORFs) was 308 and 306, respectively. The average nucleotide sequence identity between PTm1 and PTm5 was 99.95%, indicating they are quite similar to each other. A genetic relationship was found in 15.0-16.6% of the predicted ORFs among the T. maritimum phages PTm1 and PTm5, the Tenacibaculum spp. phage pT24, and the Sphingomonas paucimobilis phage PAU. Phylogenetic analysis based on the terminase large subunit genes revealed that these four phages (PTm1, PTm5, pT24 and PAU) are more closely related than the other 10 jumbo myoviruses that have similar genome sizes. Transmission electron microscopy observations suggest that the head fibers of the T. maritimum phage function as tentacles to search and recognize the host cell surface to facilitate infection.
Collapse
Affiliation(s)
- Yasuhiko Kawato
- Nansei Main Station, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Watarai, Mie, Japan
| | - Indah Istiqomah
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Fisheries, Faculty of Agriculture, Gadjah Mada University, Yogyakarta, Indonesia
| | - Alkhateib Y Gaafar
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Makoto Hanaoka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Katsuya Ishimaru
- Aquaculture Research Institute, Kindai University, Wakayama, Japan
| | - Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
3
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
4
|
Nielsen TK, Carstens AB, Browne P, Lametsch R, Neve H, Kot W, Hansen LH. The first characterized phage against a member of the ecologically important sphingomonads reveals high dissimilarity against all other known phages. Sci Rep 2017; 7:13566. [PMID: 29051555 PMCID: PMC5648845 DOI: 10.1038/s41598-017-13911-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/29/2017] [Indexed: 01/26/2023] Open
Abstract
This study describes the first molecular characterization of a bacteriophage infecting a member of the environmentally important Sphingomonadaceae family. Both bacteriophage Lacusarx and its host Sphingobium sp. IP1 were isolated from activated sludge from a wastewater treatment plant. Genome sequencing revealed that the phage genes display little similarity to other known phages, despite a remarkable conservation of the synteny in which the functional genes occur among distantly related phages. Phylogenetic analyses confirmed that Lacusarx represents a hitherto undescribed genus of phages. A classical lysis cassette could not be identified in Lacusarx, suggesting that the genes encoding endolysin, holin, and spanin are host-specific and not found in phages infecting other bacteria. The virus harbors 24 tRNA genes corresponding to 18 different amino acids and furthermore has a significantly different codon usage than its host. Proteomic analysis of Lacusarx revealed the protein components of the phage particle. A lysogeny test indicated that Lacusarx is not a temperate phage.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Alexander Byth Carstens
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Patrick Browne
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark.
| |
Collapse
|
5
|
White RA, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, Lim DSS, Suttle CA. Metagenomic Analysis Suggests Modern Freshwater Microbialites Harbor a Distinct Core Microbial Community. Front Microbiol 2016; 6:1531. [PMID: 26903951 PMCID: PMC4729913 DOI: 10.3389/fmicb.2015.01531] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
Modern microbialites are complex microbial communities that interface with abiotic factors to form carbonate-rich organosedimentary structures whose ancestors provide the earliest evidence of life. Past studies primarily on marine microbialites have inventoried diverse taxa and metabolic pathways, but it is unclear which of these are members of the microbialite community and which are introduced from adjacent environments. Here we control for these factors by sampling the surrounding water and nearby sediment, in addition to the microbialites and use a metagenomics approach to interrogate the microbial community. Our findings suggest that the Pavilion Lake microbialite community profile, metabolic potential and pathway distributions are distinct from those in the neighboring sediments and water. Based on RefSeq classification, members of the Proteobacteria (e.g., alpha and delta classes) were the dominant taxa in the microbialites, and possessed novel functional guilds associated with the metabolism of heavy metals, antibiotic resistance, primary alcohol biosynthesis and urea metabolism; the latter may help drive biomineralization. Urea metabolism within Pavilion Lake microbialites is a feature not previously associated in other microbialites. The microbialite communities were also significantly enriched for cyanobacteria and acidobacteria, which likely play an important role in biomineralization. Additional findings suggest that Pavilion Lake microbialites are under viral selection as genes associated with viral infection (e.g CRISPR-Cas, phage shock and phage excision) are abundant within the microbialite metagenomes. The morphology of Pavilion Lake microbialites changes dramatically with depth; yet, metagenomic data did not vary significantly by morphology or depth, indicating that microbialite morphology is altered by other factors, perhaps transcriptional differences or abiotic conditions. This work provides a comprehensive metagenomic perspective of the interactions and differences between microbialites and their surrounding environment, and reveals the distinct nature of these complex communities.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver BC, Canada
| | - Gregory S Gavelis
- Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Brian S Leander
- Department of Zoology, University of British Columbia, VancouverBC, Canada; Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada
| | - Gregory F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, PetalumaCA, USA; NASA Ames Research Center, Moffett FieldCA, USA
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada; Department of Botany, University of British Columbia, VancouverBC, Canada; Canadian Institute for Advanced Research, TorontoON, Canada
| |
Collapse
|
6
|
White RA, Power IM, Dipple GM, Southam G, Suttle CA. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol 2015; 6:966. [PMID: 26441900 PMCID: PMC4585152 DOI: 10.3389/fmicb.2015.00966] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022] Open
Abstract
Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R2 > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Ian M Power
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Gregory M Dipple
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Gordon Southam
- School of Earth Sciences, University of Queensland Brisbane, QLD, Australia
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Department of Botany, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
7
|
Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. J Virol 2015; 89:10945-58. [PMID: 26311868 PMCID: PMC4621102 DOI: 10.1128/jvi.01353-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023] Open
Abstract
Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.
Collapse
|
8
|
Complete Genome Sequence of Sphingobacterium sp. Strain ML3W, Isolated from Wings of Myotis lucifugus Infected with White Nose Syndrome. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01477-14. [PMID: 25614576 PMCID: PMC4319595 DOI: 10.1128/genomea.01477-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingobacterium sp. strain ML3W was isolated from the wing of a bat infected with white nose syndrome. We report the complete 5.33-Mb genome sequence of Sphingobacterium sp. strain ML3W, obtained using Pacific Biosciences technology. Being the second complete Sphingobacterium sequence, this will increase knowledge of the genus.
Collapse
|