1
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
2
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
3
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
4
|
Gregory KS, Mahadeva TB, Liu SM, Acharya KR. Structural Features of Clostridium botulinum Neurotoxin Subtype A2 Cell Binding Domain. Toxins (Basel) 2022; 14:toxins14050356. [PMID: 35622602 PMCID: PMC9146395 DOI: 10.3390/toxins14050356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are a group of clostridial toxins that cause the potentially fatal neuroparalytic disease botulism. Although highly toxic, BoNTs are utilized as therapeutics to treat a range of neuromuscular conditions. Several serotypes (BoNT/A-/G, /X) have been identified with vastly differing toxicological profiles. Each serotype can be further sub-categorised into subtypes due to subtle variations in their protein sequence. These minor changes have been attributed to differences in both the duration of action and potency for BoNT/A subtypes. BoNTs are composed of three domains—a cell-binding domain, a translocation domain, and a catalytic domain. In this paper, we present the crystal structures of the botulinum neurotoxin A2 cell binding domain, both alone and in complex with its receptor ganglioside GD1a at 1.63 and 2.10 Å, respectively. The analysis of these structures reveals a potential redox-dependent Lys-O-Cys bridge close to the ganglioside binding site and a hinge motion between the HCN and HCC subdomains. Furthermore, we make a detailed comparison with the previously reported HC/A2:SV2C structure for a comprehensive structural analysis of HC/A2 receptor binding.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
| | - Tejaswini B. Mahadeva
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (T.B.M.)
- Correspondence: ; Tel.: +44-(0)1225-386238
| |
Collapse
|
5
|
Gregory KS, Mojanaga OO, Liu SM, Acharya KR. Crystal Structures of Botulinum Neurotoxin Subtypes A4 and A5 Cell Binding Domains in Complex with Receptor Ganglioside. Toxins (Basel) 2022; 14:toxins14020129. [PMID: 35202156 PMCID: PMC8876736 DOI: 10.3390/toxins14020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Botulinum neurotoxins (BoNT) cause the potentially fatal neuroparalytic disease botulism that arises due to proteolysis of a SNARE protein. Each BoNT is comprised of three domains: a cell binding domain (HC), a translocation domain (HN), and a catalytic (Zn2+ endopeptidase) domain (LC). The HC is responsible for neuronal specificity by targeting both a protein and ganglioside receptor at the neuromuscular junction. Although highly toxic, some BoNTs are commercially available as therapeutics for the treatment of a range of neuromuscular conditions. Here we present the crystal structures of two BoNT cell binding domains, HC/A4 and HC/A5, in a complex with the oligosaccharide of ganglioside, GD1a and GM1b, respectively. These structures, along with a detailed comparison with the previously reported apo-structures, reveal the conformational changes that occur upon ganglioside binding and the interactions involved.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
- Correspondence: ; Tel.: +44-(0)1225-386238
| |
Collapse
|
6
|
Tenea GN, Hurtado P. Next-Generation Sequencing for Whole-Genome Characterization of Weissella cibaria UTNGt21O Strain Originated From Wild Solanum quitoense Lam. Fruits: An Atlas of Metabolites With Biotechnological Significance. Front Microbiol 2021; 12:675002. [PMID: 34163450 PMCID: PMC8215347 DOI: 10.3389/fmicb.2021.675002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The whole genome of Weissella cibaria strain UTNGt21O isolated from wild fruits of Solanum quitoense (naranjilla) shrub was sequenced and annotated. The similarity proportions based on the genus level, as a result of the best hits for the entire contig, were 54.84% with Weissella, 6.45% with Leuconostoc, 3.23% with Lactococcus, and 35.48% no match. The closest genome was W. cibaria SP7 (GCF_004521965.1) with 86.21% average nucleotide identity (ANI) and 3.2% alignment coverage. The genome contains 1,867 protein-coding genes, among which 1,620 were assigned with the EggNOG database. On the basis of the results, 438 proteins were classified with unknown function from which 247 new hypothetical proteins have no match in the nucleotide Basic Local Alignment Search Tool (BLASTN) database. It also contains 78 tRNAs, six copies of 5S rRNA, one copy of 16S rRNA, one copy of 23S rRNA, and one copy of tmRNA. The W. cibaria UTNGt21O strain harbors several genes responsible for carbohydrate metabolism, cellular process, general stress responses, cofactors, and vitamins, conferring probiotic features. A pangenome analysis indicated the presence of various strain-specific genes encoded for proteins responsible for the defense mechanisms as well as gene encoded for enzymes with biotechnological value, such as penicillin acylase and folates; thus, W. cibaria exhibited high genetic diversity. The genome characterization indicated the presence of a putative CRISPR-Cas array and five prophage regions and the absence of acquired antibiotic resistance genes, virulence, and pathogenic factors; thus, UTNGt21O might be considered a safe strain. Besides, the interaction between the peptide extracts from UTNGt21O and Staphylococcus aureus results in cell death caused by the target cell integrity loss and the release of aromatic molecules from the cytoplasm. The results indicated that W. cibaria UTNGt21O can be considered a beneficial strain to be further exploited for developing novel antimicrobials and probiotic products with improved technological characteristics.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - Pamela Hurtado
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
7
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
8
|
Moga MA, Dimienescu OG, Bălan A, Scârneciu I, Barabaș B, Pleș L. Therapeutic Approaches of Botulinum Toxin in Gynecology. Toxins (Basel) 2018; 10:toxins10040169. [PMID: 29690530 PMCID: PMC5923335 DOI: 10.3390/toxins10040169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT serotype (BoNT-X) has been reported in some studies. BoNT-X has not been shown to actually be an active neurotoxin despite its catalytically active LC, so it should be described as a putative eighth serotype. The mechanism of action of the serotypes is similar: they inhibit the release of acetylcholine from the nerve endings but their therapeutically potency varies. Botulinum toxin type A (BoNT-A) is the most studied serotype for therapeutic purposes. Regarding the gynecological pathology, a series of studies based on the efficiency of its use in the treatment of refractory myofascial pelvic pain, vaginism, dyspareunia, vulvodynia and overactive bladder or urinary incontinence have been reported. The current study is a review of the literature regarding the efficiency of BoNT-A in the gynecological pathology and on the long and short-term effects of its administration.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Ioan Scârneciu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Barna Barabaș
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleș
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
9
|
Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O, Zanotti G, Binz T, Montecucco C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 2016; 6:30257. [PMID: 27443638 PMCID: PMC4957215 DOI: 10.1038/srep30257] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/01/2016] [Indexed: 12/03/2022] Open
Abstract
The genome of Weissella oryzae SG25T was recently sequenced and a botulinum neurotoxin (BoNT) like gene was identified by bioinformatics methods. The typical three-domains organization of BoNTs with a N-terminal metalloprotease domain, a translocation and a cell binding domains could be identified. The BoNT family of neurotoxins is rapidly growing, but this was the first indication of the possible expression of a BoNT toxin outside the Clostridium genus. We performed molecular modeling and dynamics simulations showing that the 50 kDa N-terminal domain folds very similarly to the metalloprotease domain of BoNT/B, whilst the binding part is different. However, neither the recombinant metalloprotease nor the binding domains showed cross-reactivity with the standard antisera that define the seven serotypes of BoNTs. We found that the purified Weissella metalloprotease cleaves VAMP at a single site untouched by the other VAMP-specific BoNTs. This site is a unique Trp-Trp peptide bond located within the juxtamembrane segment of VAMP which is essential for neurotransmitter release. Therefore, the present study identifies the first non-Clostridial BoNT-like metalloprotease that cleaves VAMP at a novel and relevant site and we propose to label it BoNT/Wo.
Collapse
Affiliation(s)
- Irene Zornetta
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova, Italy
| | | | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Fabrizio Anniballi
- National Reference Center for Botulism, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità (ISS), Roma, Italy
| | - Luca Bano
- Microbiology and Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Vicolo Mazzini 4, Villorba di Treviso, Italy
| | - Oneda Leka
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova, Italy
| | - Thomas Binz
- Medizinische Hochschule Hannover, Institut für Physiologische Chemie OE4310, Hannover, Germany
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova, Italy
| |
Collapse
|
10
|
Mansfield MJ, Adams JB, Doxey AC. Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett 2014; 589:342-8. [PMID: 25541486 DOI: 10.1016/j.febslet.2014.12.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022]
Abstract
Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family.
Collapse
Affiliation(s)
- Michael J Mansfield
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
| | - Jeremy B Adams
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|