1
|
Anjos LRBD, Costa VAF, Neves BJ, Junqueira-Kipnis AP, Kipnis A. Repurposing miconazole and tamoxifen for the treatment of Mycobacterium abscessus complex infections through in silico chemogenomics approach. World J Microbiol Biotechnol 2023; 39:273. [PMID: 37553519 DOI: 10.1007/s11274-023-03718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.
Collapse
Affiliation(s)
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory of Cheminformatics (LabChem), Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - André Kipnis
- Department of Biosciences and Technology, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Jin P, Dai J, Guo Y, Wang X, Lu J, Zhu Y, Yu F. Genomic Analysis of Mycobacterium abscessus Complex Isolates from Patients with Pulmonary Infection in China. Microbiol Spectr 2022; 10:e0011822. [PMID: 35863029 PMCID: PMC9430165 DOI: 10.1128/spectrum.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and increasingly cause opportunistic pulmonary infections. However, the genetic typing of MABC isolates remains largely unclear in China. Genomic analyses were conducted for 69 MABC clinical isolates obtained from patients with lower respiratory tract infections in Shanghai Pulmonary Hospital between 2014 and 2016. The draft genomes of the 69 clinical strains were assembled, with a total length of 4.5 to 5.6 Mb, a percent GC content (GC%) ranging from 63.9 to 68.1%, and 4,492 to 5,404 genes per genome. Susceptibility test shows that most isolates are resistant to many antimicrobials, including clarithromycin, but susceptible to tigecycline. Analyses revealed the presence of genes conferring resistance to antibiotics, including macrolides, aminoglycosides, rifampicin, and tetracyclines. Furthermore, 80 to 114 virulence genes were identified per genome, including those related to the invasion of macrophages, iron incorporation, and avoidance of immune clearance. Mobile genetic elements, including insertion sequences, transposons, and genomic islands, were discovered in the genomes. Phylogenetic analyses of all MABC isolates with another 41 complete MABC genomes identified three clades; 46 isolates were clustered in clade I, corresponding to M. abscessus subsp. abscessus, and 25 strains belonged to existing clonal complexes. Overall, this is the first comparative genomic analysis of MABC clinical isolates in China. These results show significant intraspecies variations in genetic determinants encoding antimicrobial resistance, virulence, and mobile elements and controversial subspecies classification using current marker gene combinations. This information will be useful in understanding the evolution, antimicrobial resistance, and pathogenesis of MABC strains and facilitating future vaccine development and drug design. IMPORTANCE Over the past decade, infections by Mycobacterium abscessus complex (MABC) isolates have been increasingly reported worldwide. MABC strains often show a high incidence in cystic fibrosis (CF) patients, whereas in Asia, these strains are frequently recovered from non-CF patients with significant genomic diversity. The present work involves analyses of the antimicrobial resistance, virulence, and phylogeny of 69 selected MABC isolates from non-CF pulmonary patients in Shanghai Pulmonary Hospital by whole-genome sequencing; it represents the first comprehensive investigation of MABC strains in China at the genomic level. These findings highlight the diversity of this group of nontuberculous mycobacteria and provide a mechanistic understanding of evolution and pathogenesis, which is valuable for the development of novel and effective antimicrobial therapies for deadly MABC infections in China.
Collapse
Affiliation(s)
- Peipei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Zhu
- Immunity and Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Genomic Analysis of Mycobacterium abscessus Complex Isolates Collected in Ireland between 2006 and 2017. J Clin Microbiol 2020; 58:JCM.00295-20. [PMID: 32295892 DOI: 10.1128/jcm.00295-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the Mycobacterium abscessus complex (MABC) are multidrug-resistant nontuberculous mycobacteria and cause opportunistic pulmonary infections in individuals with cystic fibrosis (CF). In this study, genomic analysis of MABC isolates was performed to gain greater insights into the epidemiology of circulating strains in Ireland. Whole-genome sequencing (WGS) was performed on 70 MABC isolates that had been referred to the Irish Mycobacteria Reference Laboratory between 2006 and 2017 across nine Irish health care centers. The MABC isolates studied comprised 52 isolates from 27 CF patients and 18 isolates from 10 non-CF patients. WGS identified 57 (81.4%) as M. abscessus subsp. abscessus, 10 (14.3%) as M. abscessus subsp. massiliense, and 3 (4.3%) as M. abscessus subsp. bolletii Forty-nine (94%) isolates from 25 CF patients were identified as M. abscessus subsp. abscessus, whereas 3 (6%) isolates from 2 CF patients were identified as M. abscessus subsp. massiliense Among the isolates from non-CF patients, 44% (8/18) were identified as M. abscessus subsp. abscessus, 39% (7/18) were identified as M. abscessus subsp. massiliense, and 17% (3/18) were identified as M. abscessus subsp. bolletii WGS detected two clusters of closely related M. abscessus subsp. abscessus isolates that included isolates from different CF centers. There was a greater genomic diversity of MABC isolates among the isolates from non-CF patients than among the isolates from CF patients. Although WGS failed to show direct evidence of patient-to-patient transmission among CF patients, there was a predominance of two different strains of M. abscessus subsp. abscessus Furthermore, some MABC isolates were closely related to global strains, suggesting their international spread. Future prospective real-time epidemiological and clinical data along with contemporary MABC sequence analysis may elucidate the sources and routes of transmission among patients infected with MABC.
Collapse
|
4
|
Comparative Analysis of Whole-Genome and Methylome Profiles of a Smooth and a Rough Mycobacterium abscessus Clinical Strain. G3-GENES GENOMES GENETICS 2020; 10:13-22. [PMID: 31719113 PMCID: PMC6945021 DOI: 10.1534/g3.119.400737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium abscessus is a fast growing Mycobacterium species mainly causing skin and respiratory infections in human. M. abscessus is resistant to numerous drugs, which is a major challenge for the treatment. In this study, we have sequenced the genomes of two clinical M. abscessus strains having rough and smooth morphology, using the single molecule real-time and Illumina HiSeq sequencing technology. In addition, we reported the first comparative methylome profiles of a rough and a smooth M. abscessus clinical strains. The number of N4-methylcytosine (4mC) and N6-methyladenine (6mA) modified bases obtained from smooth phenotype were two-fold and 1.6 fold respectively higher than that of rough phenotype. We have also identified 4 distinct novel motifs in two clinical strains and genes encoding antibiotic-modifying/targeting enzymes and genes associated with intracellular survivability having different methylation patterns. To our knowledge, this is the first report about genome-wide methylation profiles of M. abscessus strains and identification of a natural linear plasmid (15 kb) in this critical pathogen harboring methylated bases. The pan-genome analysis of 25 M. abscessus strains including two clinical strains revealed an open pan genome comprises of 7596 gene clusters. Likewise, structural variation analysis revealed that the genome of rough phenotype strain contains more insertions and deletions than the smooth phenotype and that of the reference strain. A total of 391 single nucleotide variations responsible for the non-synonymous mutations were detected in clinical strains compared to the reference genome. The comparative genomic analysis elucidates the genome plasticity in this emerging pathogen. Furthermore, the detection of genome-wide methylation profiles of M. abscessus clinical strains may provide insight into the significant role of DNA methylation in pathogenicity and drug resistance in this opportunistic pathogen.
Collapse
|
5
|
Komatsu T, Ohya K, Sawai K, Odoi JO, Otsu K, Ota A, Ito T, Kawai M, Maruyama F. Draft genome sequences of Mycolicibacterium peregrinum isolated from a pig with lymphadenitis and from soil on the same Japanese pig farm. BMC Res Notes 2019; 12:341. [PMID: 31208450 PMCID: PMC6580614 DOI: 10.1186/s13104-019-4380-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
Objectives Mycolicibacterium peregrinum, a rapidly growing mycobacterial species, can opportunistically infect humans and other animals. Although M. peregrinum infections in animals have been reported, the infection sources are unknown, as is information on its virulence and drug resistant genes, which limits our current understanding of this bacterium. To address this knowledge gap, we obtained draft genome sequences for two M. peregrinum isolates; one from a case of pig lymphadenitis and one from the pig farm’s soil. Data description We report here the draft genome sequences of M. peregrinum isolates 131_1 and 138 (6,451,733-bp and 6,479,047-bp). They were isolated from a pig with mesenteric lymph node lymphadenitis and from soil on the Japanese farm where the pig was reared. A sequence alignment identity score of 100% was obtained by in silico DNA–DNA hybridization of the two isolates, while 98.28% (isolate 131_1) and 98.27% (isolate 138) scores were recorded for hybridization with a human isolate. Both isolates carry arr-1, AAC(2′)-Ib, RbpA, mtrA and tap drug-resistance genes. Isolates 131_1 and 138 carry 234 and 236 putative virulence genes, respectively. Therefore, environment M. peregrinum is potentially drug resistant and can cause swine lymphadenitis. Our data provides valuable new information for future studies on nontuberculous mycobacteria.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizouno, Miaicho, Okazaki, 4440805, Japan
| | - Kenji Ohya
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 5011193, Japan.,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 5011193, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), 1-1 Yanagido, Gifu, 5011193, Japan.,Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kotaro Sawai
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 5011193, Japan.,Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 3050856, Japan
| | - Justice Opare Odoi
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 5011193, Japan
| | - Keiko Otsu
- Gifu Prefectural Chuo Livestock Hygiene Service Center, 1-1 Yanagido, Gifu, 5011112, Japan
| | - Atsushi Ota
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 6300192, Japan
| | - Toshihiro Ito
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 6068501, Japan.,Laboratory of Proteome Research, Proteome Research Center, National Institute of Biomedical Innovation, Ibaraki, Osaka, 567-0085, Japan
| | - Mikihiko Kawai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 6068501, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 6068501, Japan. .,Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, 4811230, Chile.
| |
Collapse
|
6
|
Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 2014; 52:3573-82. [PMID: 25056330 DOI: 10.1128/jcm.01144-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by Mycobacterium abscessus are responsible for a range of disease manifestations from pulmonary to skin infections and are notoriously difficult to treat, due to innate resistance to many antibiotics. Previous population studies of clinical M. abscessus isolates utilized multilocus sequence typing or pulsed-field gel electrophoresis, but high-resolution examinations of genetic diversity at the whole-genome level have not been well characterized, particularly among clinical isolates derived in the United States. We performed whole-genome sequencing of 11 clinical M. abscessus isolates derived from eight U.S. patients with pulmonary nontuberculous mycobacterial infections, compared them to 30 globally diverse clinical isolates, and investigated intrapatient genomic diversity and evolution. Phylogenomic analyses revealed a cluster of closely related U.S. and Western European M. abscessus subsp. abscessus isolates that are genetically distinct from other European isolates and all Asian isolates. Large-scale variation analyses suggested genome content differences of 0.3 to 8.3%, relative to the reference strain ATCC 19977(T). Longitudinally sampled isolates showed very few single-nucleotide polymorphisms and correlated genomic deletion patterns, suggesting homogeneous infection populations. Our study explores the genomic diversity of clinical M. abscessus strains from multiple continents and provides insight into the genome plasticity of an opportunistic pathogen.
Collapse
|