1
|
Jasińska A, Walaszczyk A, Paraszkiewicz K. Omics-Based Approaches in Research on Textile Dye Microbial Decolorization. Molecules 2024; 29:2771. [PMID: 38930836 PMCID: PMC11206425 DOI: 10.3390/molecules29122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland;
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
2
|
Jiang X, Miao B, Zhao X, Bai X, Yuan M, Chen X, Gong X, Liu Z, Li J, Meng S, Han X, Li J. Unveiling the Emergence and Genetic Diversity of OXA-48-like Carbapenemase Variants in Shewanella xiamenensis. Microorganisms 2023; 11:1325. [PMID: 37317299 DOI: 10.3390/microorganisms11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
An increase in the carbapenem-hydrolyzing capacity of class D β-lactamase has been observed in strains of multiple species, posing a significant challenge to the control of antibiotic resistance. In this study, we aimed to investigate the genetic diversity and phylogenetic characteristics of new blaOXA-48-like variants derived from Shewanella xiamenensis. Three ertapenem-non-susceptible S. xiamenensis strains were identified, one isolated from the blood sample of an inpatient, the other two isolated from the aquatic environment. Phenotypic characterization confirmed that the strains were carbapenemase producers and exhibited antimicrobial resistance patterns to ertapenem, with some showing lower susceptibility to imipenem, chloramphenicol, ciprofloxacin, and tetracycline. No significant resistance to cephalosporins was observed. Sequence analysis revealed that one strain harbored blaOXA-181 and the other two strains harbored blaOXA-48-like genes, with open reading frame (ORF) similarities with blaOXA-48 ranging from 98.49% to 99.62%. The two novel blaOXA-48-like genes, named blaOXA-1038 and blaOXA-1039, respectively, were cloned and expressed in E. coli. The three OXA-48-like enzymes demonstrated significant hydrolysis activity against meropenem, and the classical β-lactamase inhibitor had no significant inhibitory effect. In conclusion, this study demonstrated the diversity of the blaOXA gene and highlighted the emergence of novel OXA carbapenemases in S. xiamenensis. Further attention to S. xiamenensis and OXA carbapenemases is recommended for the effective prevention and control of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xueqi Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Beibei Miao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaofei Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuemei Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xia Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xinyi Gong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zeliang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
3
|
Nanjani S, Paul D, Keharia H. Genome analysis to decipher syntrophy in the bacterial consortium 'SCP' for azo dye degradation. BMC Microbiol 2021; 21:177. [PMID: 34116639 PMCID: PMC8194134 DOI: 10.1186/s12866-021-02236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background A bacterial consortium SCP comprising three bacterial members, viz. Stenotrophomonas acidaminiphila APG1, Pseudomonas stutzeri APG2 and Cellulomonas sp. APG4 was developed for degradation of the mono-azo dye, Reactive Blue 28. The genomic analysis of each member of the SCP consortium was done to elucidate the catabolic potential and role of the individual organism in dye degradation. Results The genes for glycerol utilization were detected in the genomes of APG2 and APG4, which corroborated with their ability to grow on a minimal medium containing glycerol as the sole co-substrate. The genes for azoreductase were identified in the genomes of APG2 and APG4, while no such trait could be determined in APG1. In addition to co-substrate oxidation and dye reduction, several other cellular functions like chemotaxis, signal transduction, stress-tolerance, repair mechanisms, aromatic degradation, and copper tolerance associated with dye degradation were also annotated. A model for azo dye degradation is postulated, representing the predominant role of APG4 and APG2 in dye metabolism while suggesting an accessory role of APG1. Conclusions This exploratory study is the first-ever attempt to divulge the genetic basis of azo-dye co-metabolism by cross-genome comparisons and can be harnessed as an example for demonstrating microbial syntrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02236-9.
Collapse
Affiliation(s)
- Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Dhiraj Paul
- Microbial Culture Collection, National Centre for Microbial Resource, National Centre for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
4
|
Complete Genome Sequence of an Extensively Drug-Resistant Shewanella xiamenensis Strain Isolated from Algerian Hospital Effluents. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01236-16. [PMID: 27834700 PMCID: PMC5105093 DOI: 10.1128/genomea.01236-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we present the first complete genome of an extensively drug-resistant strain of Shewanella xiamenensis, collected from hospital effluents in Algeria. This genome includes the chromosome and a large new plasmid harboring several drug-resistance genes.
Collapse
|