1
|
Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol Adv 2023; 69:108278. [PMID: 37898328 DOI: 10.1016/j.biotechadv.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Bacillus sp. is one of the most distinctive gram-positive bacteria, able to grow efficiently using cheap carbon sources and secrete a variety of useful substances, which are widely used in food, pharmaceutical, agricultural and environmental industries. At the same time, Bacillus sp. is also recognized as a safe genus with a relatively clear genetic background, which is conducive to the industrial production of target metabolites. In this review, we discuss the reasons why Bacillus sp. has been so extensively studied and summarize its advances in systems and synthetic biology, engineering strategies to improve microbial cell properties, and industrial applications in several metabolic engineering applications. Finally, we present the current challenges and possible solutions to provide a reliable basis for Bacillus sp. as a microbial cell factory.
Collapse
Affiliation(s)
- Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Batista BD, Dourado MN, Figueredo EF, Hortencio RO, Marques JPR, Piotto FA, Bonatelli ML, Settles ML, Azevedo JL, Quecine MC. The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch Microbiol 2021; 203:3869-3882. [PMID: 34013419 DOI: 10.1007/s00203-021-02361-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022]
Abstract
Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.
Collapse
Affiliation(s)
- Bruna Durante Batista
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Manuella Nóbrega Dourado
- Department of Microbiology, Biomedicine Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Everthon Fernandes Figueredo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Renata Ockner Hortencio
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Laboratory of Nuclear Instrumentation, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Maria Letícia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.,Bioinformatics Core, University of California, Davis, CA, USA
| | | | - João Lucio Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, 11 Pádua Dias Av., Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
3
|
Cui Y, Märtlbauer E, Dietrich R, Luo H, Ding S, Zhu K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit Rev Toxicol 2019; 49:342-356. [PMID: 31116061 DOI: 10.1080/10408444.2019.1609410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of the Bacillus cereus group have been widely used as probiotics for human beings, food animals, plants, and environmental remediation. Paradoxically, B. cereus is responsible for both gastrointestinal and nongastrointestinal syndromes and represents an important opportunistic food-borne pathogen. Toxicity assessment is a fundamental issue to evaluate safety of probiotics. Here, we summarize the state of our current knowledge about the toxins of B. cereus sensu lato to be considered for safety assessment of probiotic candidates. Surfactin-like emetic toxin (cereulide) and various enterotoxins including nonhemolytic enterotoxin, hemolysin BL, and cytotoxin K are responsible for food poisoning outbreaks characterized by emesis and diarrhea. In addition, other factors, such as hemolysin II, Certhrax, immune inhibitor A1, and sphingomyelinase, contribute to toxicity and overall virulence of B. cereus.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| |
Collapse
|