1
|
Complete Genome Sequence of Thiohalobacter sp. Strain COW1, Isolated from Activated Sludge Treating Coke Oven Wastewater. Microbiol Resour Announc 2021; 10:10/7/e00013-21. [PMID: 33602728 PMCID: PMC7892661 DOI: 10.1128/mra.00013-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified. A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.
Collapse
|
2
|
Oshiki M, Fukushima T, Kawano S, Kasahara Y, Nakagawa J. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism. Microbes Environ 2019; 34:402-412. [PMID: 31631078 PMCID: PMC6934394 DOI: 10.1264/jsme2.me19068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thiocyanate (SCN-) is harmful to a wide range of organisms, and its removal is essential for environmental protection. A neutrophilic halophile capable of thiocyanate degradation, Thiohalobacter sp. strain FOKN1, was highly enriched (relative abundance; 98.4%) from activated sludge collected from a bioreactor receiving thiocyanate-rich wastewater. The enrichment culture degraded 3.38 mM thiocyanate within 140 h, with maximum activity at pH 8.8, 37°C, and 0.18 M sodium chloride. Thiocyanate degradation was inhibited by 30 mg L-1 phenol, but not by thiosulfate. Microbial thiocyanate degradation is catalyzed by thiocyanate dehydrogenase, while limited information is currently available on the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles. Therefore, (meta)genomic and proteomic analyses of enrichment cultures were performed to elucidate the whole genome sequence and proteome of Thiohalobacter sp. strain FOKN1. The 3.23-Mb circular Thiohalobacter sp. strain FOKN1 genome was elucidated using a PacBio RSII sequencer, and the expression of 914 proteins was identified by tandem mass spectrometry. The Thiohalobacter sp. strain FOKN1 genome had a gene encoding thiocyanate dehydrogenase, which was abundant in the proteome, suggesting that thiocyanate is degraded by thiocyanate dehydrogenase to sulfur and cyanate. The sulfur formed may be oxidized to sulfate by the sequential oxidation reactions of dissimilatory sulfite reductase, adenosine-5'-phosphosulfate reductase, and dissimilatory ATP sulfurylase. Although the Thiohalobacter sp. strain FOKN1 genome carried a gene encoding cyanate lyase, its protein expression was not detectable. The present study advances the understanding of the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | - Toshikazu Fukushima
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| | - Shuichi Kawano
- Department of Computer and Network Engineering Graduate School of Informatics and Engineering, The University of Electro-Communications
| | | | - Junichi Nakagawa
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| |
Collapse
|
3
|
Watts MP, Spurr LP, Lê Cao KA, Wick R, Banfield JF, Moreau JW. Genome-resolved metagenomics of an autotrophic thiocyanate-remediating microbial bioreactor consortium. WATER RESEARCH 2019; 158:106-117. [PMID: 31022528 DOI: 10.1016/j.watres.2019.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Industrial thiocyanate (SCN-) waste streams from gold mining and coal coking have polluted environments worldwide. Modern SCN- bioremediation involves use of complex engineered heterotrophic microbiomes; little attention has been given to the ability of a simple environmental autotrophic microbiome to biodegrade SCN-. Here we present results from a bioreactor experiment inoculated with SCN- -loaded mine tailings, incubated autotrophically, and subjected to a range of environmentally relevant conditions. Genome-resolved metagenomics revealed that SCN- hydrolase-encoding, sulphur-oxidizing autotrophic bacteria mediated SCN- degradation. These microbes supported metabolically-dependent non-SCN--degrading sulphur-oxidizing autotrophs and non-sulphur oxidizing heterotrophs, and "niche" microbiomes developed spatially (planktonic versus sessile) and temporally (across changing environmental parameters). Bioreactor microbiome structures changed significantly with increasing temperature, shifting from Thiobacilli to a novel SCN- hydrolase-encoding gammaproteobacteria. Transformation of carbonyl sulphide (COS), a key intermediate in global biogeochemical sulphur cycling, was mediated by plasmid-hosted CS2 and COS hydrolase genes associated with Thiobacillus, revealing a potential for horizontal transfer of this function. Our work shows that simple native autotrophic microbiomes from mine tailings can be employed for SCN- bioremediation, thus improving the recycling of ore processing waters and reducing the hydrological footprint of mining.
Collapse
Affiliation(s)
- Mathew P Watts
- School of Earth Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Liam P Spurr
- School of Earth Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ryan Wick
- Department of Biochemistry and Molecular Biology, Bio21, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jillian F Banfield
- School of Earth Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
4
|
Tsallagov SI, Sorokin DY, Tikhonova TV, Popov VO, Muyzer G. Comparative Genomics of Thiohalobacter thiocyanaticus HRh1 T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source. Front Microbiol 2019; 10:898. [PMID: 31118923 PMCID: PMC6504805 DOI: 10.3389/fmicb.2019.00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/09/2019] [Indexed: 12/01/2022] Open
Abstract
The genomes of Thiohalobacter thiocyanaticus and Guyparkeria (formerly known as Halothiobacillus) sp. SCN-R1, two gammaproteobacterial halophilic sulfur-oxidizing bacteria (SOB) capable of thiocyanate oxidation via the "cyanate pathway", have been analyzed with a particular focus on their thiocyanate-oxidizing potential and sulfur oxidation pathways. Both genomes encode homologs of the enzyme thiocyanate dehydrogenase (TcDH) that oxidizes thiocyanate via the "cyanate pathway" in members of the haloalkaliphilic SOB of the genus Thioalkalivibrio. However, despite the presence of conservative motives indicative of TcDH, the putative TcDH of the halophilic SOB have a low overall amino acid similarity to the Thioalkalivibrio enzyme, and also the surrounding genes in the TcDH locus were different. In particular, an alternative copper transport system Cus is present instead of Cop and a putative zero-valent sulfur acceptor protein gene appears just before TcDH. Moreover, in contrast to the thiocyanate-oxidizing Thioalkalivibrio species, both genomes of the halophilic SOB contained a gene encoding the enzyme cyanate hydratase. The sulfur-oxidizing pathway in the genome of Thiohalobacter includes a Fcc type of sulfide dehydrogenase, a rDsr complex/AprAB/Sat for oxidation of zero-valent sulfur to sulfate, and an incomplete Sox pathway, lacking SoxCD. The sulfur oxidation pathway reconstructed from the genome of Guyparkeria sp. SCN-R1 was more similar to that of members of the Thiomicrospira-Hydrogenovibrio group, including a Fcc type of sulfide dehydrogenase and a complete Sox complex. One of the outstanding properties of Thiohalobacter is the presence of a Na+-dependent ATP synthase, which is rarely found in aerobic Prokaryotes.Overall, the results showed that, despite an obvious difference in the general sulfur-oxidation pathways, halophilic and haloalkaliphilic SOB belonging to different genera within the Gammaproteobacteria developed a similar unique thiocyanate-degrading mechanism based on the direct oxidative attack on the sulfane atom of thiocyanate.
Collapse
Affiliation(s)
- Stanislav I. Tsallagov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Tamara V. Tikhonova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Oshiki M, Masuda Y, Yamaguchi T, Araki N. Synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and thiocyanate. CHEMOSPHERE 2018; 213:498-506. [PMID: 30245226 DOI: 10.1016/j.chemosphere.2018.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Coke-oven wastewater discharged from the steel-manufacturing process is phenol and thiocyanate (SCN)-rich wastewater, which inhibits microbial activities in biological wastewater treatment processes. In the present study, synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and SCN was examined by batch incubation and continuous operation of an anammox reactor. The comparison of anammox activities determined in the batch incubation, in which the anammox biomass was anoxically incubated with 10-250 mg L-1 of i) phenol, ii) SCN, or iii) both phenol and SCN, showed that synergistic inhibition by phenol and SCN was greater than the inhibitions by phenol or SCN alone. The synergistic inhibition by phenol and SCN was further investigated by operating an up-flow column anammox reactor for 262 d. The removal efficiencies of NH4+ and NO2- deteriorated when phenol and SCN concentrations in the influent increased to 16 and 32 mg L-1, respectively, and the inhibition of anammox activity was further investigated by a15NO2- tracer experiment. Addition of phenol and SCN resulted in a population shift of anammox bacteria, and the dominant species changed from "Candidatus Kuenenia stuttgartiensis" to "Ca. Brocadia sinica". The relative abundance of Azoarcus and Thiobacillus 16S rRNA gene reads increased during the operation, suggesting that they were responsible for the anaerobic phenol and SCN degradation. The present study is the first to document the synergistic inhibition of anammox activity by phenol and SCN and the microbial consortia involved in the nitrogen removal as well as the phenol and SCN degradations.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan.
| | - Yoshiko Masuda
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| |
Collapse
|
6
|
Analysis of the Genes Involved in Thiocyanate Oxidation during Growth in Continuous Culture of the Haloalkaliphilic Sulfur-Oxidizing Bacterium Thioalkalivibrio thiocyanoxidans ARh 2 T Using Transcriptomics. mSystems 2017; 2:mSystems00102-17. [PMID: 29285524 PMCID: PMC5744179 DOI: 10.1128/msystems.00102-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation. Thiocyanate (N=C−S−) is a moderately toxic, inorganic sulfur compound. It occurs naturally as a by-product of the degradation of glucosinolate-containing plants and is produced industrially in a number of mining processes. Currently, two pathways for the primary degradation of thiocyanate in bacteria are recognized, the carbonyl sulfide pathway and the cyanate pathway, of which only the former has been fully characterized. Use of the cyanate pathway has been shown in only 10 strains of Thioalkalivibrio, a genus of obligately haloalkaliphilic sulfur-oxidizing Gammaproteobacteria found in soda lakes. So far, only the key enzyme in this reaction, thiocyanate dehydrogenase (TcDH), has been purified and studied. To gain a better understanding of the other genes involved in the cyanate pathway, we conducted a transcriptomics experiment comparing gene expression during the growth of Thioalkalivibrio thiocyanoxidans ARh 2T with thiosulfate with that during its growth with thiocyanate. Triplicate cultures were grown in continuous substrate-limited mode, followed by transcriptome sequencing (RNA-Seq) of the total mRNA. Differential expression analysis showed that a cluster of genes surrounding the gene for TcDH were strongly upregulated during growth with thiocyanate. This cluster includes genes for putative copper uptake systems (copCD, ABC-type transporters), a putative electron acceptor (fccAB), and a two-component regulatory system (histidine kinase and a σ54-responsive Fis family transcriptional regulator). Additionally, we observed the increased expression of RuBisCO and some carboxysome shell genes involved in inorganic carbon fixation, as well as of aprAB, genes involved in sulfite oxidation through the reverse sulfidogenesis pathway. IMPORTANCE Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation.
Collapse
|