1
|
Ullah S, Ji K, Li J, Xu Y, Jiang C, Zhang H, Huang M, Feng Y. Characterization of NMCR-2, a new non-mobile colistin resistance enzyme: implications for an MCR-8 ancestor. Environ Microbiol 2020; 23:844-860. [PMID: 32686285 DOI: 10.1111/1462-2920.15171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
MCR-4 and MCR-8 are two recently identified members of an ongoing MCR family of colistin resistance. Although that aquatic reservoir for MCR-4 is proposed, the origin and mechanism of MCR-8 is poorly understood. Here we report a previously unrecognized non-mobile colistin resistance enzyme, termed NMCR-2, originating from the plant pathogen Kosakonia pseudosacchari. NMCR-2 (551aa) gives 67.3% identity to MCR-8 (565aa). NMCR-2 is placed as a progenitor/ancestor for MCR-8 in phylogeny of MCR members. Genetic study reveals that nmcr-2 is comparable to mcr-8 in the ability of producing phenotypic colistin resistance. Biochemical analyses determine that these two enzymes catalyse the transfer of PEA from the donor PE lipid substrate to the recipient lipid A molecule by a putative 'ping-pong' trade-off. Further experiment of protein engineering demonstrates that the two motifs (TM region and catalytic domain) of NMCR-2 are functionally exchangeable with that of MCR-8, rather than MCR-1. Physiological impacts of nmcr-2 and/or mcr-8 are detected in Escherichia coli, featuring with fitness cost. Evidently, the action and mechanism of NMCR-2 is analogous to that of MCR-8. Therefore, our finding underlines that NMCR-2 might be a possible progenitor of MCR-8.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Kai Ji
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Chengjian Jiang
- Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China.,College of Animal Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
2
|
Bloch SE, Clark R, Gottlieb SS, Wood LK, Shah N, Mak SM, Lorigan JG, Johnson J, Davis-Richardson AG, Williams L, McKellar M, Soriano D, Petersen M, Horton A, Smith O, Wu L, Tung E, Broglie R, Tamsir A, Temme K. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4591-4603. [PMID: 32267497 PMCID: PMC7382387 DOI: 10.1093/jxb/eraa176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/09/2020] [Indexed: 05/04/2023]
Abstract
Plants depend upon beneficial interactions between roots and root-associated microorganisms for growth promotion, disease suppression, and nutrient availability. This includes the ability of free-living diazotrophic bacteria to supply nitrogen, an ecological role that has been long underappreciated in modern agriculture for efficient crop production systems. Long-term ecological studies in legume-rhizobia interactions have shown that elevated nitrogen inputs can lead to the evolution of less cooperative nitrogen-fixing mutualists. Here we describe how reprogramming the genetic regulation of nitrogen fixation and assimilation in a novel root-associated diazotroph can restore ammonium production in the presence of exogenous nitrogen inputs. We isolated a strain of the plant-associated proteobacterium Kosakonia sacchari from corn roots, characterized its nitrogen regulatory network, and targeted key nodes for gene editing to optimize nitrogen fixation in corn. While the wild-type strain exhibits repression of nitrogen fixation in conditions replete with bioavailable nitrogen, such as fertilized greenhouse and field experiments, remodeled strains show elevated levels in the rhizosphere of corn in the greenhouse and field even in the presence of exogenous nitrogen. Such strains could be used in commercial applications to supply fixed nitrogen to cereal crops.
Collapse
|
3
|
LuxR Solos in the Plant Endophyte Kosakonia sp. Strain KO348. Appl Environ Microbiol 2020; 86:AEM.00622-20. [PMID: 32332134 PMCID: PMC7301841 DOI: 10.1128/aem.00622-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling. Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization. IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.
Collapse
|
4
|
Chen Y, Huang Z, Li J, Su G, Feng B. Complete Genome Sequence of Kosakonia radicincitans GXGL-4A, a Nitrogen-Fixing Bacterium with Capability to Degrade TEX. Curr Microbiol 2020; 77:1848-1857. [PMID: 32170407 DOI: 10.1007/s00284-020-01942-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022]
Abstract
Kosakonia radicincitans GXGL-4A, a free-living nitrogen-fixing (NF) bacterial strain isolated from maize (Zea mays L.) roots was found to have ability to degrade aromatic hydrocarbons. In this study, we describe the main morphological characteristics of bacterium, aromatic hydrocarbon-degrading capability, and the complete genome of K. radicincitans GXGL-4A. The genome is consisted of only one 5,687,681 bp linear chromosome with a G + C content of 53.96%. The strain has two genetically distinct nitrogenase systems, one based on molybdenum (Mo) similar to nitrogenase isolated from a wide range of nitrogen-fixing organisms, and the other contains iron (Fe). The differences in transcriptional level of several important nitrogen fixation (nif) genes between LB (nitrogen-rich, NR) and A15 nitrogen-free (nitrogen-limited, NL) culture conditions were detected using Real-time Quantitative Reverse Transcription PCR (qRT-PCR). The bacterial cells of GXGL-4A can grow well in LB liquid medium containing 1% toluene, ethylbenzene or xylene, suggesting a good resistance to the tested aromatic hydrocarbons. The results of GC-MS analysis showed that K. radicincitans GXGL-4A has a good capability to degrade toluene, ethylbenzene, and xylene (TEX). Completion of the genome sequencing will no doubt contribute to the deep exploration and comprehensive utilization of this NF bacterium in sustainable agriculture and bioremediation of aromatic pollutants.
Collapse
Affiliation(s)
- Yunpeng Chen
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhibo Huang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaoyong Li
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoxun Su
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baoyun Feng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:349-363. [PMID: 31609645 DOI: 10.1094/mpmi-09-19-0256-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.
Collapse
Affiliation(s)
- Susan Mosquito
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park-Basovizza, 34149 Trieste, Italy
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Vienna, Austria
| | - Michael P Myers
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | | | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
6
|
Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, Becker M. Phage tail-like particles are versatile bacterial nanomachines - A mini-review. J Adv Res 2019; 19:75-84. [PMID: 31341672 PMCID: PMC6629978 DOI: 10.1016/j.jare.2019.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/14/2019] [Indexed: 11/27/2022] Open
Abstract
Suggestion to simplify and unify the nomenclature of phage tail-like particles. Discovery of kosakonicin, a new bacteriocin and tailocin. Microscopy of kosakonicin from Kosakonia radicincitans DSM 16656. Discovery of multiple tail fiber genes in the kosakonicin gene cluster. Discovery of large genetic diversity in the kosakonicin tail fiber locus among ten Kosakonia strains.
Type VI secretion systems and tailocins, two bacterial phage tail-like particles, have been reported to foster interbacterial competition. Both nanostructures enable their producer to kill other bacteria competing for the same ecological niche. Previously, type VI secretion systems and particularly R-type tailocins were considered highly specific, attacking a rather small range of competitors. Their specificity is conferred by cell surface receptors of the target bacterium and receptor-binding proteins on tailocin tail fibers and tail fiber-like appendages of T6SS. Since many R-type tailocin gene clusters contain only one tail fiber gene it was appropriate to expect small R-type tailocin target ranges. However, recently up to three tail fiber genes and broader target ranges have been reported for one plant-associated Pseudomonas strain. Here, we show that having three tail fiber genes per R-type tailocin gene cluster is a common feature of several strains of Gram-negative (often plant-associated) bacteria of the genus Kosakonia. Knowledge about the specificity of type VI secretion systems binding to target bacteria is even lower than in R-type tailocins. Although the mode of operation implicated specific binding, it was only published recently that type VI secretion systems develop tail fiber-like appendages. Here again Kosakonia, exhibiting up to three different type VI secretion systems, may provide valuable insights into the antagonistic potential of plant-associated bacteria. Current understanding of the diversity and potential of phage tail-like particles is fragmentary due to various synonyms and misleading terminology. Consistency in technical terms is a precondition for concerted and purposeful research, which precedes a comprehensive understanding of the specific interaction between bacteria producing phage tail-like particles and their targets. This knowledge is fundamental for selecting and applying tailored, and possibly engineered, producer bacteria for antagonizing plant pathogenic microorganisms.
Collapse
Affiliation(s)
- Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Katja R Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Beatrice Berger
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72074 Tübingen, Germany
| | - Matthias Becker
- Institute for National and International Plant Health, Julius Kühn-Institute - Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany.,Leibniz Institute of Vegetable and Ornamental Crops, 14979 Grossbeeren, Germany
| |
Collapse
|
7
|
Sun S, Chen Y, Cheng J, Li Q, Zhang Z, Lan Z. Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiol (Praha) 2018; 63:789-802. [PMID: 29876800 DOI: 10.1007/s12223-018-0608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.
Collapse
Affiliation(s)
- Shuaixin Sun
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Yunpeng Chen
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China.
| | - Jiejie Cheng
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Qiongjie Li
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhenchuan Zhang
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhengliang Lan
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|