1
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Geng N, Sun G, Liu WJ, Gao BC, Sun C, Xu C, Hua E, Xu L. Distribution, Phylogeny and Evolution of Clinical and Environmental Vibrio vulnificus Antibiotic-Resistant Genes. Evol Bioinform Online 2022; 18:11769343221134400. [PMID: 36404992 PMCID: PMC9669696 DOI: 10.1177/11769343221134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio vulnificus is an emergent marine pathogen and is the
cause of a deadly septicemia. However, the evolution mechanism of
antibiotic-resistant genes (ARGs) is still unclear. Twenty-two high-quality
complete genomes of V. vulnificus were obtained and grouped
into 16 clinical isolates and 6 environmental isolates. Genomic annotations
found 23 ARG orthologous genes, among which 14 ARGs were shared by V.
vulnificus and other Vibrio members. Furthermore,
those ARGs were located in their chromosomes, rather than in the plasmids.
Phylogenomic reconstruction based on single-copy orthologous protein sequences
and ARG protein sequences revealed that clinical and environmental V.
vulnificus isolates were in a scattered distribution. The
calculation of non-synonymous and synonymous substitutions indicated that most
of ARGs evolved under purifying selection with the
Ka/Ks ratios lower than one, while
h-ns, rsmA, and soxR in several clinical
isolates evolved under the positive selection with
Ka/Ks ratios >1. Our result indicated
that V. vulnificus antibiotic-resistant armory was not only
confined to clinical isolates, but to environmental ones as well and clinical
isolates inclined to accumulate beneficial non-synonymous substitutions that
could be retained to improve competitiveness.
Collapse
Affiliation(s)
- Nan Geng
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, People’s Republic of China
| | - Guojin Sun
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, People’s Republic of China
| | - Wen-Jia Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Bin-Cheng Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, People’s Republic of China
| | - Cundong Xu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, People’s Republic of China
| | - Ertian Hua
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou, People’s Republic of China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, People’s Republic of China
| |
Collapse
|
3
|
Tu PY, Huang SJ, Rajanbabu V, Wu JL, Chen JY. Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:200. [PMID: 33752587 PMCID: PMC7983300 DOI: 10.1186/s12864-021-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina’s sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. Results Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. Conclusions Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07521-5.
Collapse
Affiliation(s)
- Pin-Yang Tu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan
| | - Shin-Jie Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Venugopal Rajanbabu
- Department of Plant Breeding 7 Genetics, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirapalli, Tamil Nadu, 620027, India
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan. .,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
Wu SH, Chou HY, Liu PC, Wu JL, Gong HY. Granulin peptide GRN-41 of Mozambique tilapia is a novel antimicrobial peptide against Vibrio species. Biochem Biophys Res Commun 2019; 515:706-711. [PMID: 31182280 DOI: 10.1016/j.bbrc.2019.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
In our previous study, the novel GRN-41 peptide generated from alternative splicing of the Mozambique tilapia PGRN1 gene was identified to be a potent peptide that protected against V. vulnificus in the transgenic zebrafish model by modulating innate immune-related genes. In this study, the anti-bacterial activities of synthetic Mozambique tilapia GRN-41 peptide (OmGRN-41) against various bacterial pathogens were investigated. The results showed that OmGRN-41 had bactericidal activity against Vibrio species, including V. vulnificus, V. alginolyticus, and V. harveyi, but exhibited bacteriostatic activity against V. parahaemolyticus. OmGRN-41 maintained bactericidal activity (64 μM) against V. vulnificus at pH 2 to pH 10 or after heat treatment for 1 h at high temperatures between 40 °C and 100 °C. TEM observations revealed that the outer membrane of V. vulnificus was disrupted by OmGRN-41, leading to morphological rupture and loss of cytoplasmic contents. Additionally, little hemolytic activity against tilapia and sheep erythrocytes was detected after treatment with 128 μM OmGRN-41. OmGRN-41 can effectively enhance the survival of Nile tilapia infected by V. vulnificus. Our results suggest that the OmGRN-41 is a novel antimicrobial peptide possessing bactericidal activity, especially against Vibrio species. These results indicate that OmGRN-41 can be applied in human Vibriosis treatment and has the potential to defend against Vibrio spp. infection in critical aquaculture organisms.
Collapse
Affiliation(s)
- Sheng-Han Wu
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Hsin-Yiu Chou
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ping-Chung Liu
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
5
|
Ting CH, Chen YC, Chen JY. Nile tilapia fry fed on antimicrobial peptide Epinecidin-1-expressing Artemia cyst exhibit enhanced immunity against acute bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2018; 81:37-48. [PMID: 29981882 DOI: 10.1016/j.fsi.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Artemia are often used as a live feed for fry in aquaculture. We have previously demonstrated that supplementing adult zebrafish feed with Artemia, which express an Epinephelus coioides-derived antimicrobial peptide, Epinecidin-1 (Epi-1), protects against bacterial infection. Thus, Artemia may serve as a bioreactor for producing biofunctional molecules. However, the application of Epi-1 transgenic Artemia in larval aquaculture of commercial fish species has not been investigated. Here we used a Tol2-transposon system to generate stable Epi-1 expressing Artemia. Nile tilapia (Oreochromis niloticus) fry were then fed with decapsulated transgenic cysts and acutely challenged with Gram-positive Streptococcus iniae or Gram-negative Vibrio vulnificus (204). Survival analysis revealed that tilapia fry fed with Epi-1 transgenic cysts were resistant to acute bacterial infection. Immune-related gene expression profiling showed that S. iniae and V. vulnificus inoculations produced distinct immunomodulatory effects in the tilapia fry. Upon S. iniae infection, tilapia fry fed on control diet exhibited an immune response dominated by Tlr-7/MyD88, wherein Tnf-α, Il-8 and Cxcl-10 expression were all induced; conversely, the tilapia fry fed with Epi-1 transgenic cysts showed a Tlr-2/Tlr-5-dominant immune response, marked by the induction of Il-1β, Il-8 and Il-12 expression. However, after V. vulnificus (204) infection control fry exhibited a Tlr-2/MyD88/Traf-6-dominant response with activation of Tnf-α and Il-8 expression; meanwhile tilapia fry fed on Epi-1 transgenic cyst showed a dominant Tlr-2/Tlr-5-mediated immune response, including induction of Il-1β, Il-8, Il-12, and Cxcl-10 expression. These findings suggest that feeding larval fish fry with Epi-1 transgenic Artemia cysts confers enhanced immunity toward bacterial challenge. Epi-1 transgenic cysts should therefore be considered as a potential functional feed for larval aquaculture.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
| |
Collapse
|
6
|
Draft Genome Sequence of Vibrio vulnificus 86573B, a Bacterium Isolated from Diseased Tilapia in Taiwan. Microbiol Resour Announc 2018; 7:MRA00813-18. [PMID: 30533606 PMCID: PMC6211340 DOI: 10.1128/mra.00813-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus 86573B is a biotype 1 strain isolated from a moribund tilapia collected in Kaohsiung, Taiwan, during an outbreak early in 1997. Here, we report the draft genome sequence of this bacterium to facilitate the investigation of its biology and future comparative genomic analysis.
Collapse
|
7
|
Wu SH, Lin HJ, Lin WF, Wu JL, Gong HY. A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 75:74-90. [PMID: 29408220 DOI: 10.1016/j.fsi.2018.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/22/2017] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A novel alternatively spliced transcript from the short-form PGRN1 gene encoding a novel, secreted GRN peptide composed of 20-a.a. signal peptide and 41-a.a. GRN named GRN-41 was identified to be abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia. The expression of GRN-41 and PGRN1 were further induced in the spleen of tilapia challenged with Vibrio vulnificus at 3 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted GRN-41, GRN-A and PGRN1 of Mozambique tilapia specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing tilapia GRN-41 (68%), GRN-A (32%) and PGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. It indicates tilapia GRN-41 is a potent peptide against V. vulnificus infection. The secreted tilapia GRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1β, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. The tilapia GRN-41 peptide can enhance the innate immune response by further elevating TNFb, IL-1β, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Our results suggest that the novel GRN-41 peptide generated from alternative splicing of the tilapia PGRN1 gene is a potent peptide that defends against V. vulnificus in the transgenic zebrafish model by modulation of innate immunity.
Collapse
Affiliation(s)
- Sheng-Han Wu
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Jie Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Fu Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Yi Gong
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
8
|
Cho ST, Chang HH, Egamberdieva D, Kamilova F, Lugtenberg B, Kuo CH. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host. PLoS One 2015; 10:e0140231. [PMID: 26452056 PMCID: PMC4599888 DOI: 10.1371/journal.pone.0140231] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding that this strain achieves biological control of pathogens through effective competition for nutrients and niches.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsing-Hua Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Dilfuza Egamberdieva
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder str. 84, Müncheberg, Germany
| | - Faina Kamilova
- Koppert Biological Systems, Veilingweg 14, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - Ben Lugtenberg
- Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, the Netherlands
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Abstract
Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium.
Collapse
|
10
|
Complete Genome Sequence of "Candidatus Sulcia muelleri" ML, an Obligate Nutritional Symbiont of Maize Leafhopper (Dalbulus maidis). GENOME ANNOUNCEMENTS 2015; 3:3/1/e01483-14. [PMID: 25635014 PMCID: PMC4319508 DOI: 10.1128/genomea.01483-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
“Candidatus Sulcia muelleri” is a symbiont of sap-feeding insects in the suborder Auchenorrhyncha. The strain “Ca. Sulcia muelleri” ML is associated with the maize leafhopper (Dalbulus maidis), collected in Brazil, which is a disease vector that affects corn production. Here, we report the complete genome sequence of this bacterium.
Collapse
|