1
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
2
|
Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S, Puntoni G, Baroncelli R, Vannacci G, Dufresne M. Straw Competition and Wheat Root Endophytism of Trichoderma gamsii T6085 as Useful Traits in the Biological Control of Fusarium Head Blight. PHYTOPATHOLOGY 2021; 111:1129-1136. [PMID: 33245256 DOI: 10.1094/phyto-09-20-0441-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trichoderma gamsii T6085 has been investigated for many years as a beneficial isolate for use in the biocontrol of Fusarium head blight (FHB) of wheat caused primarily by Fusarium graminearum. Previous work focused on application of T6085 to wheat spikes at anthesis, whereas application to soil before or at sowing has received limited attention. In the present study, the competitive ability of T6085 on plant residues against F. graminearum was investigated. Results showed a significant reduction of wheat straw colonization by the pathogen and of the development of perithecia, not only when T6085 was applied alone but also in the presence of a F. oxysporum isolate (7121), well known as a natural competitor on wheat plant residues. T6085 was able to endophytically colonize wheat roots, resulting in internal colonization of the radical cortex area, without reaching the vascular system, as confirmed by confocal microscopy. This intimate interaction with the plant resulted in a significant increase of the expression of the plant defense-related genes PAL1 and PR1. Taken together, competitive ability, endophytic behavior, and host resistance induction represent three important traits that can be of great use in the application of T6085 against FHB not only on spikes at anthesis but potentially also in soil before or at sowing.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Pilar Esteban
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Tracy Plainchamp
- Institute of Plant Sciences Paris-Saclay, UMR9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Saclay Plant Sciences, 91405 Orsay, France
| | - Séverine Domenichini
- Institute of Plant Sciences Paris-Saclay, UMR9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Saclay Plant Sciences, 91405 Orsay, France
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Riccardo Baroncelli
- Instituto Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, 37185 Salamanca, Spain
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - Marie Dufresne
- Institute of Plant Sciences Paris-Saclay, UMR9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Saclay Plant Sciences, 91405 Orsay, France
| |
Collapse
|
3
|
Yang Y, Sossah FL, Li Z, Hyde KD, Li D, Xiao S, Fu Y, Yuan X, Li Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front Microbiol 2021; 11:596719. [PMID: 33505368 PMCID: PMC7829358 DOI: 10.3389/fmicb.2020.596719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Mycogone perniciosa causes wet bubble disease in Agaricus bisporus and various Agaricomycetes species. In a previous work, we identified 41 GH18 chitinase genes and other pathogenicity-related genes in the genome of M. perniciosa Hp10. Chitinases are enzymes that degrade chitin, and they have diverse functions in nutrition, morphogenesis, and pathogenesis. However, these important genes in M. perniciosa have not been fully characterized, and their functions remain unclear. Here, we performed a genome-wide analysis of M. perniciosa GH18 genes and analyzed the transcriptome profiles and GH18 expression patterns in M. perniciosa during the time course of infection in A. bisporus. Phylogenetic analysis of the 41 GH18 genes with those of 15 other species showed that the genes were clustered into three groups and eight subgroups based on their conserved domains. The GH18 genes clustered in the same group shared different gene structures but had the same protein motifs. All GH18 genes were localized in different organelles, were unevenly distributed on 11 contigs, and had orthologs in the other 13 species. Twelve duplication events were identified, and these had undergone both positive and purifying selection. The transcriptome analyses revealed that numerous genes, including transporters, cell wall degrading enzymes (CWDEs), cytochrome P450, pathogenicity-related genes, secondary metabolites, and transcription factors, were significantly upregulated at different stages of M. perniciosa Hp10 infection of A. bisporus. Twenty-three out of the 41 GH18 genes were differentially expressed. The expression patterns of the 23 GH18 genes were different and were significantly expressed from 3 days post-inoculation of M. perniciosa Hp10 in A. bisporus. Five differentially expressed GH18 genes were selected for RT-PCR and gene cloning to verify RNA-seq data accuracy. The results showed that those genes were successively expressed in different infection stages, consistent with the previous sequencing results. Our study provides a comprehensive analysis of pathogenicity-related and GH18 chitinase genes’ influence on M. perniciosa mycoparasitism of A. bisporus. Our findings may serve as a basis for further studies of M. perniciosa mycoparasitism, and the results have potential value for improving resistance in A. bisporus and developing efficient disease-management strategies to mitigate wet bubble disease.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shijun Xiao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaohui Yuan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Vicente I, Baroncelli R, Morán-Diez ME, Bernardi R, Puntoni G, Hermosa R, Monte E, Vannacci G, Sarrocco S. Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms 2020; 8:E1603. [PMID: 33081019 PMCID: PMC7603203 DOI: 10.3390/microorganisms8101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.
Collapse
Affiliation(s)
- Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| |
Collapse
|
5
|
Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 2020; 10:E52. [PMID: 32013104 PMCID: PMC7074241 DOI: 10.3390/metabo10020052] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant-microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| | - Irene N. Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| |
Collapse
|
6
|
Sarrocco S, Valenti F, Manfredini S, Esteban P, Bernardi R, Puntoni G, Baroncelli R, Haidukowski M, Moretti A, Vannacci G. Is Exploitation Competition Involved in a Multitrophic Strategy for the Biocontrol of Fusarium Head Blight? PHYTOPATHOLOGY 2019; 109:560-570. [PMID: 30775950 DOI: 10.1094/phyto-04-18-0123-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Trichoderma gamsii T6085 was used in combination with a Fusarium oxysporum isolate (7121) in order to evaluate, in a multitrophic approach, their competitive ability against F. graminearum, one of the main causal agents of Fusarium head blight (FHB) on wheat. The two antagonists and the pathogen were coinoculated on two different natural substrates, wheat and rice kernels. Both T6085 and 7121, alone and coinoculated, significantly reduced the substrate colonization and mycotoxin production by the pathogen. The two antagonists did not affect each other. Using a metabolic approach (Biolog), we investigated whether exploitation competition could explain this antagonistic activity. The aim was to define whether the three fungi coexist or if one isolate nutritionally dominates another. Results obtained from Biolog suggest that no exploitative competition occurs between the antagonists and the pathogen during the colonization of the natural substrates. Interference competition was then preliminarily evaluated to justify the reduction in the pathogen's growth and to better explain mechanisms. A significant reduction of F. graminearum growth was observed when the pathogen grew in the cultural filtrates of T. gamsii T6085, both alone and cocultured with F. oxysporum 7121, thus suggesting the involvement of secondary metabolites. As far as we know, this is the first time that an ecological study has been performed to explain how and which kind of competition could be involved in a multitrophic biocontrol of FHB.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Fabio Valenti
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Sara Manfredini
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Pilar Esteban
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Rodolfo Bernardi
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Grazia Puntoni
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| | - Riccardo Baroncelli
- 2 Instituto Hispano-Luso de Investigaciones Agrarias, University of Salamanca, Calle del Duero, 12; 37185 Villamayor (Salamanca), Spain; and
| | | | | | - Giovanni Vannacci
- 1 Plant Pathology & Mycology Lab, Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università degli Studi di Pisa Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Genome Sequence of Fusarium graminearum Strain MDC_Fg1, Isolated from Bread Wheat Grown in France. Microbiol Resour Announc 2018; 7:MRA01260-18. [PMID: 30533795 PMCID: PMC6256482 DOI: 10.1128/mra.01260-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
Fusarium graminearum is a major fungal pathogen that induces Fusarium head blight (FHB), a devastating disease of small-grain cereals worldwide. This announcement provides the whole-genome sequence of a highly virulent and toxin-producing French isolate, MDC_Fg1. Fusarium graminearum is a major fungal pathogen that induces Fusarium head blight (FHB), a devastating disease of small-grain cereals worldwide. This announcement provides the whole-genome sequence of a highly virulent and toxin-producing French isolate, MDC_Fg1.
Collapse
|
8
|
Genome Sequence of the Mycotoxigenic Crop Pathogen Fusarium proliferatum Strain ITEM 2341 from Date Palm. Microbiol Resour Announc 2018; 7:MRA00964-18. [PMID: 30533929 PMCID: PMC6256521 DOI: 10.1128/mra.00964-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
Fusarium proliferatum is a widely distributed fungal pathogen associated with more than 26 crop species important in global food security. Its strong mycotoxigenic capability with potential impacts on human and animal health is well recognized. Fusarium proliferatum is a widely distributed fungal pathogen associated with more than 26 crop species important in global food security. Its strong mycotoxigenic capability with potential impacts on human and animal health is well recognized. In this work, we report the draft genome sequence of F. proliferatum strain ITEM 2341, originally isolated from date palm, providing a platform for further comparative and functional genomic investigations.
Collapse
|