1
|
Werner N, Petersen K, Vollstedt C, Garcia PP, Chow J, Ferrer M, Fernandez-Lopez L, Falke S, Perbandt M, Hinrichs W, Betzel C, Streit WR. The Komagataeibacter europaeus GqqA is the prototype of a novel bifunctional N-Acyl-homoserine lactone acylase with prephenate dehydratase activity. Sci Rep 2021; 11:12255. [PMID: 34112823 PMCID: PMC8192741 DOI: 10.1038/s41598-021-91536-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Previously, we reported the isolation of a quorum quenching protein (QQ), designated GqqA, from Komagataeibacter europaeus CECT 8546 that is highly homologous to prephenate dehydratases (PDT) (Valera et al. in Microb Cell Fact 15, 88. https://doi.org/10.1186/s12934-016-0482-y , 2016). GqqA strongly interfered with N-acyl-homoserine lactone (AHL) quorum sensing signals from Gram-negative bacteria and affected biofilm formation in its native host strain Komagataeibacter europaeus. Here we present and discuss data identifying GqqA as a novel acylase. ESI-MS-MS data showed unambiguously that GqqA hydrolyzes the amide bond of the acyl side-chain of AHL molecules, but not the lactone ring. Consistent with this observation the protein sequence does not carry a conserved Zn2+ binding motif, known to be essential for metal-dependent lactonases, but in fact harboring the typical periplasmatic binding protein domain (PBP domain), acting as catalytic domain. We report structural details for the native structure at 2.5 Å resolution and for a truncated GqqA structure at 1.7 Å. The structures obtained highlight that GqqA acts as a dimer and complementary docking studies indicate that the lactone ring of the substrate binds within a cleft of the PBP domain and interacts with polar residues Y16, S17 and T174. The biochemical and phylogenetic analyses imply that GqqA represents the first member of a novel type of QQ family enzymes.
Collapse
Affiliation(s)
- Nadine Werner
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University Hamburg, C/O DESY, 22607, Hamburg, Germany
| | - Katrin Petersen
- Microbiology and Biotechnology, University Hamburg, 22609, Hamburg, Germany
| | - Christel Vollstedt
- Microbiology and Biotechnology, University Hamburg, 22609, Hamburg, Germany
| | - Pablo Perez Garcia
- Microbiology and Biotechnology, University Hamburg, 22609, Hamburg, Germany
| | - Jennifer Chow
- Microbiology and Biotechnology, University Hamburg, 22609, Hamburg, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Laura Fernandez-Lopez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University Hamburg, C/O DESY, 22607, Hamburg, Germany
| | - Markus Perbandt
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University Hamburg, C/O DESY, 22607, Hamburg, Germany
| | - Winfried Hinrichs
- Institute for Biochemistry, University Greifswald, 17487, Greifswald, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University Hamburg, C/O DESY, 22607, Hamburg, Germany.
| | - Wolfgang R Streit
- Microbiology and Biotechnology, University Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
3
|
Ryngajłło M, Kubiak K, Jędrzejczak-Krzepkowska M, Jacek P, Bielecki S. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers. Microbiologyopen 2018; 8:e00731. [PMID: 30365246 PMCID: PMC6528568 DOI: 10.1002/mbo3.731] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Komagataeibacter species are well-recognized bionanocellulose (BNC) producers. This bacterial genus, formerly assigned to Gluconacetobacter, is known for its phenotypic diversity manifested by strain-dependent carbon source preference, BNC production rate, pellicle structure, and strain stability. Here, we performed a comparative study of nineteen Komagataeibacter genomes, three of which were newly contributed in this work. We defined the core genome of the genus, clarified phylogenetic relationships among strains, and provided genetic evidence for the distinction between the two major clades, the K. xylinus and the K. hansenii. We found genomic traits, which likely contribute to the phenotypic diversity between the Komagataeibacter strains. These features include genome flexibility, carbohydrate uptake and regulation of its metabolism, exopolysaccharides synthesis, and the c-di-GMP signaling network. In addition, this work provides a comprehensive functional annotation of carbohydrate metabolism pathways, such as those related to glucose, glycerol, acetan, levan, and cellulose. Findings of this multi-genomic study expand understanding of the genetic variation within the Komagataeibacter genus and facilitate exploiting of its full potential for bionanocellulose production at the industrial scale.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | | | - Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Wang SS, Han YH, Ye YX, Shi XX, Xiang P, Chen DL, Li M. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv 2017. [DOI: 10.1039/c7ra08391b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Komagataeibacter sp. W1 produced high-quality BC, the properties and synthesis mechanisms of which were analyzed by SEM, XRD and FTIR, and genome sequencing, respectively.
Collapse
Affiliation(s)
- Shan-Shan Wang
- College of Life Science
- Fujian Normal University
- Fuzhou
- China
- Quangang Petrochemical Research Institute
| | - Yong-He Han
- Quangang Petrochemical Research Institute
- Fujian Normal University
- Quanzhou
- China
| | - Yu-Xuan Ye
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- China
| | - Xiao-Xia Shi
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- China
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- China
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute
- Fujian Normal University
- Quanzhou
- China
- College of Environmental Science and Engineering
| | - Min Li
- College of Life Science
- Fujian Normal University
- Fuzhou
- China
| |
Collapse
|
5
|
Valera MJ, Mas A, Streit WR, Mateo E. GqqA, a novel protein in Komagataeibacter europaeus involved in bacterial quorum quenching and cellulose formation. Microb Cell Fact 2016; 15:88. [PMID: 27221658 PMCID: PMC4879726 DOI: 10.1186/s12934-016-0482-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background We report on the functional screening and identification of an active quorum quenching (QQ) gene in the Komagataeibacter europaeus strain CECT 8546, which is a member of the acetic acid bacteria (AAB). Results Using a previously published screening protocol (Schipper et al., in Appl Environ Microbiol 75:224–233, 2009. doi: 10.1128/AEM.01389-08) for QQ genes, we identified a single gene, designated gqqA, that interfered strongly with bacterial quorum sensing (QS) in various reporter strains. It encodes for a 281-amino acid protein with a molecular mass of 30 kDa. Although the GqqA protein is similar to predicted prephenate dehydratases, it does not complement Escherichia coli mutants of the pheA gene, thus indicating a potentially different function. Recombinant GqqA protein attenuated QS-dependent pyocyanin production and swarming motility in the Pseudomonas aeruginosa strain PAO1. Moreover, GqqA quenched the QS response of the Agrobacterium tumefaciens NTL4 and the Chromobacterium violaceum CV026 reporter strains. Interestingly, the addition of recombinant GqqA protein to growing cultures of the Komagataeibacter europaeus strain CECT 8546 altered the cellulose production phenotype of CECT 8546 and other AAB strains. In the presence of GqqA protein, cells were planktonic, and no visible cellulose biofilms formed. The addition of low levels of N-acylhomoserine lactones maintained the biofilm formation phenotype. Conclusions Our data provide evidence for an interconnection between QS and AAB cellulose biofilm formation as well as QQ activity of the GqqA protein. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0482-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria José Valera
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n., 43007, Tarragona, Spain
| | - Albert Mas
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n., 43007, Tarragona, Spain
| | - Wolfgang R Streit
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Estibaliz Mateo
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n., 43007, Tarragona, Spain. .,Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Barrio Sarriena s/n., 48940, Leioa, Spain.
| |
Collapse
|