1
|
Walters R, Campolo A, Miller E, Gabriel MM, Crary M, McAnally C, Shannon P. Reduction of disinfection efficacy of contact lens care products on the global market in the presence of contact lenses and cases. BMJ Open Ophthalmol 2022; 7:bmjophth-2021-000955. [PMID: 36161836 PMCID: PMC9226912 DOI: 10.1136/bmjophth-2021-000955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
ObjectiveSight-threatening infections can be caused by pathogenic micro-organisms colonising the cornea, leading to microbial keratitis (MK). These micro-organisms can be introduced to the eye via improper contact lens use and care. MK can also result from ineffective contact lens care solutions (CLCs), even if the patient is following best practice guidelines. Therefore, it is critical to understand the differences between the effectiveness of popular CLCs on the global market.Methods and analysisFollowing the International Standards Organisation standards 14 729 and 18259, bacteria (Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus), fungi (Candida albicans, Fusarium strains) and Acanthamoeba strains were inoculated into each CLC with and without contact lenses, and held for the manufacturer’s stated disinfection time. Plate counts were conducted to determine the number of surviving micro-organisms.ResultsAll CLCs examined met the primary log reduction criteria during stand-alone testing for Pseudomonas, Staphylococcus, Candida and Fusarium. renu Multiplus, All Clean Soft, and Kombilösung Super did not meet the primary criteria when challenged with Serratia. Only OPTI-FREE Express exceeded 4 log reduction for both strains of Acanthamoeba tested. We noted a substantial reduction in disinfection efficacy when CLCs were challenged with Fusarium in the presence of lenses and cases versus stand-alone testing. OPTI-FREE Express demonstrated significantly less net log reduction loss than the other four CLCs tested.ConclusionOf the popular CLCs on the global market, the product which relies on dual biocides polyquaternium-1 and myristamidopropyl dimethylamine demonstrated the highest disinfection efficacy in microbial disinfection challenges in the absence and presence of contact lenses.
Collapse
Affiliation(s)
- Rhonda Walters
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Allison Campolo
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Elise Miller
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Manal M Gabriel
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Monica Crary
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Cindy McAnally
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| | - Paul Shannon
- R&D Microbiology, Alcon Research, LLC, Fort Worth, Texas, USA
| |
Collapse
|
2
|
Mahajan S, Sunsunwal S, Gautam V, Singh M, Ramya TNC. Biofilm inhibitory effect of alginate lyases on mucoid P. aeruginosa from a cystic fibrosis patient. Biochem Biophys Rep 2021; 26:101028. [PMID: 34095554 PMCID: PMC8165544 DOI: 10.1016/j.bbrep.2021.101028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Chronic mucoid Pseudomonas aeruginosa infections are a major scourge in cystic fibrosis patients. Mucoid P. aeruginosa displays structured alginate-rich biofilms that are resistant to antibiotics. Here, we have assessed the efficacy of a panel of alginate lyases in combating mucoid P. aeruginosa biofilms in cystic fibrosis. Albeit we could not demonstrate alginate degradation by alginate lyases in sputum, we demonstrate that the endotypic alginate lyases, CaAly (from Cellulophaga algicola) and VspAlyVI (from Vibrio sp. QY101) and the exotypic alginate lyases, FspAlyFRB (from Falsirhodobacterium sp. alg1), and SA1-IV (from Sphingomonas sp. A1), indeed inhibit biofilm formation by a mucoid P. aeruginosa strain isolated from the sputum of a cystic fibrosis patient with comparative effect to that of the glycoside hydrolase PslG, a promising candidate for biofilm treatment. We believe that these enzymes should be explored for in vivo efficacy in future studies. A P. aeruginosa strain was isolated from the sputum of a cystic fibrosis patient. The anti-biofilm efficacy of endotypic and exotypic alginate lyases was assessed. Alginate lyases CaAly, VspAlyVI, FspAlyFRB, and SA1-IV inhibited biofilm formation. Similar anti-biofilm effect was observed for the glycoside hydrolase, PslG.
Collapse
Affiliation(s)
- Sonal Mahajan
- CSIR- Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Vikas Gautam
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Meenu Singh
- Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| |
Collapse
|
3
|
Neubauer D, Jaśkiewicz M, Bauer M, Olejniczak-Kęder A, Sikorska E, Sikora K, Kamysz W. Biological and Physico-Chemical Characteristics of Arginine-Rich Peptide Gemini Surfactants with Lysine and Cystine Spacers. Int J Mol Sci 2021; 22:3299. [PMID: 33804887 PMCID: PMC8036666 DOI: 10.3390/ijms22073299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. l-cystine diamide and l-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the l-cystine diamide spacer seem to be less cytotoxic than their l-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.
Collapse
Affiliation(s)
- Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (M.B.); (K.S.); (W.K.)
| | - Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (M.B.); (K.S.); (W.K.)
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (M.B.); (K.S.); (W.K.)
| | - Agata Olejniczak-Kęder
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Karol Sikora
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (M.B.); (K.S.); (W.K.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (M.B.); (K.S.); (W.K.)
| |
Collapse
|
4
|
Sood U, Hira P, Kumar R, Bajaj A, Rao DLN, Lal R, Shakarad M. Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa. Front Microbiol 2019; 10:53. [PMID: 30787911 PMCID: PMC6372532 DOI: 10.3389/fmicb.2019.00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | - Princy Hira
- Department of Zoology, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, New Delhi, India
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | | | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | | |
Collapse
|
5
|
Dixit D, Gangadharan D, Popat KM, Reddy CRK, Trivedi M, Gadhavi DK. Synthesis, characterization and application of green seaweed mediated silver nanoparticles (AgNPs) as antibacterial agents for water disinfection. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:235-246. [PMID: 30101806 DOI: 10.2166/wst.2018.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple and eco-friendly method for the synthesis of hybrid bead silver nanoparticles (AgNPs) employing the aqueous extract derived from natural and renewable source namely tropical benthic green seaweed Ulva flexuosa was developed. This route involves the reduction of Ag+ ions anchored onto macro porous methacrylic acid copolymer beads to AgNPs for employing them as antibacterial agents for in vitro water disinfection. The seaweed extract itself acts as a reducing and stabilizing agent and requires no additional surfactant or capping agent for forming the AgNPs. The nanoparticles were analyzed using high-resolution transmission electron microscopy, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy. The study elucidates that such biologically synthesized AgNPs exhibit potential antibacterial activity against two Gram positive (Bacillus subtilis, Staphylococcus aureus) and two Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains tested. The bacterial count in treated water was reduced to zero for all the strains. Atomic force microscopy was performed to confirm the pre- and post-state of the bacteria with reference to their treatment with AgNPs. Attributes like facile environment-friendly procedure, stability and high antibacterial potency propel the consideration of these AgNPs as promising antibacterial entities.
Collapse
Affiliation(s)
- D Dixit
- Department of Earth and Environmental Science, K.S.K.V. Kachchh University, Near Changleshwar Mahadev Temple, University Road, Bhuj 370001, Kachchh-Gujarat, India E-mail:
| | - D Gangadharan
- Department of Sciences, Amrita Vishwavidyapeetham University, Amritanagar, Ettimadai, Coimbatore, Tamil Nadu 641112, India
| | - K M Popat
- Membrane Science and Separation Technology Division, CSIR Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - C R K Reddy
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - M Trivedi
- Department of Earth and Environmental Science, K.S.K.V. Kachchh University, Near Changleshwar Mahadev Temple, University Road, Bhuj 370001, Kachchh-Gujarat, India E-mail:
| | - D K Gadhavi
- Kutch Ecological Research Centre - The Corbett Foundation, Khatau Makanji Bungalow, P.O. Tera, Taluka Abdasa, District Kachchh 370660, Gujarat, India
| |
Collapse
|
6
|
Draft Genome Sequence of Pseudomonas aeruginosa ATCC 9027, Originally Isolated from an Outer Ear Infection. GENOME ANNOUNCEMENTS 2017; 5:5/48/e01397-17. [PMID: 29192089 PMCID: PMC5722075 DOI: 10.1128/genomea.01397-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pseudomonas aeruginosa ATCC 9027 was isolated in 1943 from a case of otitis externa and is commonly employed as a quality control strain for sterility, assessment of antibiofilm agents, and in vitro study of wound infection. Here, we present the 6.34-Mb draft genome sequence and highlight some pertinent genes that are associated with virulence.
Collapse
|
7
|
Reboud E, Bouillot S, Patot S, Béganton B, Attrée I, Huber P. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog 2017; 13:e1006579. [PMID: 28832671 PMCID: PMC5584975 DOI: 10.1371/journal.ppat.1006579] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/05/2017] [Accepted: 08/12/2017] [Indexed: 12/20/2022] Open
Abstract
Pore-forming toxins are potent virulence factors secreted by a large array of bacteria. Here, we deciphered the action of ExlA from Pseudomonas aeruginosa and ShlA from Serratia marcescens on host cell-cell junctions. ExlA and ShlA are two members of a unique family of pore-forming toxins secreted by a two-component secretion system. Bacteria secreting either toxin induced an ExlA- or ShlA-dependent rapid cleavage of E-cadherin and VE-cadherin in epithelial and endothelial cells, respectively. Cadherin proteolysis was executed by ADAM10, a host cell transmembrane metalloprotease. ADAM10 activation is controlled in the host cell by cytosolic Ca2+ concentration. We show that Ca2+ influx, induced by ExlA or ShlA pore formation in the plasma membrane, triggered ADAM10 activation, thereby leading to cadherin cleavage. Our data suggest that ADAM10 is not a cellular receptor for ExlA and ShlA, further confirming that ADAM10 activation occurred via Ca2+ signalling. In conclusion, ExlA- and ShlA-secreting bacteria subvert a regulation mechanism of ADAM10 to activate cadherin shedding, inducing intercellular junction rupture, cell rounding and loss of tissue barrier integrity. Pore-forming toxins are the most widespread toxins delivered by pathogenic bacteria and are required for full virulence. Pore-forming toxins perforate membranes of host cells for intracellular delivery of bacterial factors, for bacterial escape from phagosomes or in order to kill cells. Loss of membrane integrity, especially the plasma membrane, has broad implications on cell and tissue physiology. Here, we show that two members of a unique family of pore-forming toxins, secreted by Pseudomonas aeruginosa and Serratia marcescens, have the capacity to disrupt cell-cell junctions of epithelial and endothelial cells, hence breaching two major tissue barriers.
Collapse
Affiliation(s)
- Emeline Reboud
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Stéphanie Bouillot
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Sabine Patot
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Benoît Béganton
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Philippe Huber
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail:
| |
Collapse
|
8
|
Reboud E, Elsen S, Bouillot S, Golovkine G, Basso P, Jeannot K, Attrée I, Huber P. Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide. Environ Microbiol 2016; 18:3425-3439. [PMID: 26914644 DOI: 10.1111/1462-2920.13262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
We recently identified a hypervirulent strain of Pseudomonas aeruginosa, differing significantly from the classical strains in that it lacks the type 3 secretion system (T3SS), a major determinant of P. aeruginosa virulence. This new strain secretes a novel toxin, called ExlA, which induces plasma membrane rupture in host cells. For this study, we collected 18 other exlA-positive T3SS-negative strains, analyzed their main virulence factors and tested their toxicity in various models. Phylogenetic analysis revealed two groups. The strains were isolated on five continents from patients with various pathologies or in the environment. Their proteolytic activity and their motion abilities were highly different, as well as their capacity to infect epithelial, endothelial, fibroblastic and immune cells, which correlated directly with ExlA secretion levels. In contrast, their toxicity towards human erythrocytes was limited. Some strains were hypervirulent in a mouse pneumonia model and others on chicory leaves. We conclude that (i) exlA-positive strains can colonize different habitats and may induce various infection types, (ii) the strains secreting significant amounts of ExlA are cytotoxic for most cell types but are poorly hemolytic, (iii) toxicity in planta does not correlate with ExlA secretion.
Collapse
Affiliation(s)
- Emeline Reboud
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Sylvie Elsen
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Stéphanie Bouillot
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Guillaume Golovkine
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Pauline Basso
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Katy Jeannot
- Hôpital Universitaire de Besançon, 25030, Besançon, France
| | - Ina Attrée
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Philippe Huber
- Univ. Grenoble Alpes, 38000, Grenoble, France.
- CNRS, ERL5261, 38000, Grenoble, France.
- CEA, iRTSV-BCI, 38000, Grenoble, France.
- INSERM, U1036, 38000, Grenoble, France.
| |
Collapse
|
9
|
Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:564-571. [PMID: 27428387 DOI: 10.1111/1758-2229.12443] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Highly divergent strains of the major human opportunistic pathogen Pseudomonas aeruginosa have been isolated around the world by different research laboratories. They came from patients with various types of infectious diseases or from the environment. These strains are devoid of the major virulence factor used by classical strains, the Type III secretion system, but possess additional putative virulence factors, including a novel two-partner secretion system, ExlBA, responsible for the hypervirulent behavior of some clinical isolates. Here, we review the genetic and phenotypic characteristics of these recently-discovered P. aeruginosa outliers.
Collapse
Affiliation(s)
- Philippe Huber
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Pauline Basso
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Emeline Reboud
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Ina Attrée
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| |
Collapse
|