1
|
Rodrigues DCS, Silveira MC, Pribul BR, Karam BRS, Picão RC, Kraychete GB, Pereira FM, de Lima RM, de Souza AKG, Leão RS, Marques EA, Rocha-de-Souza CM, Carvalho-Assef APD. Genomic study of Acinetobacter baumannii strains co-harboring bla OXA-58 and bla NDM-1 reveals a large multidrug-resistant plasmid encoding these carbapenemases in Brazil. Front Microbiol 2024; 15:1439373. [PMID: 39086650 PMCID: PMC11288812 DOI: 10.3389/fmicb.2024.1439373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Acinetobacter baumannii contributes significantly to the global issue of multidrug-resistant (MDR) nosocomial infections. Often, these strains demonstrate resistance to carbapenems (MDR-CRAB), the first-line treatment for infections instigated by MDR A. baumannii. Our study focused on the antimicrobial susceptibility and genomic sequences related to plasmids from 12 clinical isolates of A. baumannii that carry both the blaOXA-58 and bla NDM-1 carbapenemase genes. Methods Whole-genome sequencing with long-read technology was employed for the characterization of an A. baumannii plasmid that harbors the bla OXA-58 and blaNDM-1 genes. The location of the bla OXA-58 and bla NDM-1 genes was confirmed through Southern blot hybridization assays. Antimicrobial susceptibility tests were conducted, and molecular characterization was performed using PCR and PFGE. Results Multilocus Sequence Typing analysis revealed considerable genetic diversity among bla OXA-58 and bla NDM-1 positive strains in Brazil. It was confirmed that these genes were located on a plasmid larger than 300 kb in isolates from the same hospital, which also carry other antimicrobial resistance genes. Different genetic contexts were observed for the co-occurrence of these carbapenemase-encoding genes in Brazilian strains. Discussion The propagation of bla OXA-58 and bla NDM-1 genes on the same plasmid, which also carries other resistance determinants, could potentially lead to the emergence of bacterial strains resistant to multiple classes of antimicrobials. Therefore, the characterization of these strains is of paramount importance for monitoring resistance evolution, curbing their rapid global dissemination, averting outbreaks, and optimizing therapy.
Collapse
Affiliation(s)
- Daiana Cristina Silva Rodrigues
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruno Rocha Pribul
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued Karam
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rildo Mendes de Lima
- Laboratório Central de Saúde Pública da Fundação de Vigilância em Saúde do Amazonas (LACEN-AM/FVS-RCP), Amazonas, Brazil
| | | | - Robson Souza Leão
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Oinuma KI, Suzuki M, Sakiyama A, Tsubouchi T, Saeki K, Sato K, Niki M, Yamada K, Shibayama K, Kakeya H, Kaneko Y. Genomic characterization of triple-carbapenemase-producing Acinetobacter baumannii. JAC Antimicrob Resist 2021; 3:dlab191. [PMID: 34934945 PMCID: PMC8684466 DOI: 10.1093/jacamr/dlab191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To characterize Acinetobacter baumannii OCU_Ac16a, a clinical isolate co-harbouring three acquired carbapenemase genes, bla NDM-1, bla TMB-1, and bla OXA-58, and assess the clinical significance of so-called multiple-carbapenemase producers. Methods OCU_Ac16a and its close relative, OCU_Ac16b, which lacks the bla NDM-1, were isolated from sputum cultures of a patient at Osaka City University Hospital. We subjected these strains to whole-genome analysis, particularly focusing on the genetic context of each carbapenemase gene. The transmissibility and functionality of each carbapenemase gene were analysed by conjugation and transformation experiments and antimicrobial susceptibility tests. Results bla TMB-1 was located in a class 1 integron on the chromosome, whereas bla NDM-1 and bla OXA-58 were found on plasmids named pOCU_Ac16a_2 and pOCU_Ac16a_3, respectively. pOCU_Ac16a_2 (which exhibited highly efficient self-transmissibility) and pOCU_Ac16a_3 (which did not show transmissibility but could be introduced into another A. baumannii strain via electroporation) could both confer carbapenem resistance (MICs ≥512 and ≥32 mg/L, respectively) on the recipient strain. The functionality of bla TMB-1 was evident from the high resistance of OCU_Ac16b to ceftazidime and cefepime (MICs ≥256 and 48 mg/L, respectively), and the high resistance of OCU_Ac16a to cefiderocol (MIC 32 mg/L) could be explained by the additive effect of bla NDM-1 and bla TMB-1. Conclusions Our data revealed the genomic organization of OCU_Ac16a and demonstrated that all the carbapenemase genes are functional, each contributing to the extremely high broad-spectrum resistance of OCU_Ac16a to β-lactams. As multiple-carbapenemase producers can be serious health threats as drug-resistant pathogens and disseminators of carbapenemase genes, close attention should be paid to their emergence.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | - Arata Sakiyama
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Taishi Tsubouchi
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kozo Saeki
- Department of Medical Technology, Morinomiya University of Medical Sciences, 1-26-16 Nankokita, Suminoe-ku, Osaka 559-8611, Japan
| | - Kanako Sato
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Koichi Yamada
- Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Keigo Shibayama
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Kakeya
- Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|