Fonseca É, Freitas F, Caldart R, Morgado S, Vicente AC. Pyomelanin biosynthetic pathway in pigment-producer strains from the pandemic Acinetobacter baumannii IC-5.
Mem Inst Oswaldo Cruz 2020;
115:e200371. [PMID:
33174904 PMCID:
PMC7646211 DOI:
10.1590/0074-02760200371]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND
Acinetobacter baumannii outbreaks have been associated with pandemic International Clones (ICs), but the virulence factors involved with their pathogenicity are sparsely understood. Pigment production has been linked with bacterial pathogenicity, however, this phenotype is rarely observed in A. baumannii.
OBJECTIVES
This study aimed to characterise the reddish-brown pigment produced by A. baumannii strains, and to determine its biosynthetic pathway by genomic approaches.
METHODS
Pigment characterisation and antimicrobial susceptibility were conducted by phenotypic tests. The clonal relationship was obtained by pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The genome of an A. baumannii was obtained for characterisation of genes involved with pigment production.
FINDINGS
The pyomelanin was the pigment produced by A. baumannii. Strains were extensively drug resistant and belonged to the IC-5/ST79. The pyomelanin biosynthetic pathway was determined and presented a particular architecture concerning the peripheral (tyrB, phhB and hpd) and central (hmgB, hmgC and hmgR) metabolic pathway genes. The identification of a distant HmgA homologue, probably without dioxygenase activity, could explain pyomelanin production. Virulence determinants involved with adherence (csuA/BABCDE and a T5bSS-carrying genomic island), and iron uptake (basABCDEFGHIJ, bauABCDEF and barAB) were characterised.
MAIN CONCLUSION
There is a biosynthetic pathway compatible with the pyomelanin production observed in persistent A. baumannii IC-5 strains.
Collapse