1
|
Beyer L, Schäfer AB, Undabarrena A, Mattsby-Baltzer I, Tietze D, Svensson E, Stubelius A, Wenzel M, Cámara B, Tietze AA. Mimicking Nonribosomal Peptides from the Marine Actinomycete Streptomyces sp. H-KF8 Leads to Antimicrobial Peptides. ACS Infect Dis 2024; 10:79-92. [PMID: 38113038 PMCID: PMC10788856 DOI: 10.1021/acsinfecdis.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Microorganisms within the marine environment have been shown to be very effective sources of naturally produced antimicrobial peptides (AMPs). Several nonribosomal peptides were identified based on genome mining predictions of Streptomyces sp. H-KF8, a marine Actinomycetota isolated from a remote Northern Chilean Patagonian fjord. Based on these predictions, a series of eight peptides, including cyclic peptides, were designed and chemically synthesized. Six of these peptides showed antimicrobial activity. Mode of action studies suggest that two of these peptides potentially act on the cell membrane via a novel mechanism allowing the passage of small ions, resulting in the dissipation of the membrane potential. This study shows that though structurally similar peptides, determined by NMR spectroscopy, the incorporation of small sequence mutations results in a dramatic influence on their bioactivity including mode of action. The qualified hit sequence can serve as a basis for more potent AMPs in future studies.
Collapse
Affiliation(s)
- Luisa
I. Beyer
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Ann-Britt Schäfer
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Agustina Undabarrena
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Inger Mattsby-Baltzer
- Department
of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska
Academy at University of Gothenburg, University
of Gothenburg, Box 440, Göteborg 405 30, Sweden
| | - Daniel Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Elin Svensson
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Alexandra Stubelius
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Michaela Wenzel
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Beatriz Cámara
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| |
Collapse
|
2
|
Undabarrena A, Salvà-Serra F, Jaén-Luchoro D, Castro-Nallar E, Mendez KN, Valencia R, Ugalde JA, Moore ERB, Seeger M, Cámara B. Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile. Mar Genomics 2018; 40:13-17. [PMID: 32420876 DOI: 10.1016/j.margen.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/18/2023]
Abstract
Rhodococcus sp. H-CA8f was isolated from marine sediments obtained from the Comau fjord, located in Northern Chilean Patagonia. Whole-genome sequencing was achieved using PacBio RS II platform, comprising one closed, complete chromosome of 6,19 Mbp with a 62.45% G + C content. The chromosome harbours several metabolic pathways providing a wide catabolic potential, where the upper biphenyl route is described. Also, Rhodococcus sp. H-CA8f bears one linear mega-plasmid of 301 Kbp and 62.34% of G + C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. These genetic characteristics provide relevant insights regarding Chilean marine actinobacterial strains.
Collapse
Affiliation(s)
- A Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - F Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - D Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - E Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - K N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - R Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - J A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; uBiome, Inc., San Francisco, CA, United States
| | - E R B Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Gothenburg, Sweden
| | - M Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - B Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
3
|
Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. Biodiversity of Actinobacteria from the South Pacific and the Assessment of Streptomyces Chemical Diversity with Metabolic Profiling. Mar Drugs 2017; 15:E286. [PMID: 28892017 PMCID: PMC5618425 DOI: 10.3390/md15090286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, bioprospecting in underexplored habitats has gained enhanced focus, since new taxa of marine actinobacteria can be found, and thus possible new metabolites. Actinobacteria are in the foreground due to their versatile production of secondary metabolites that present various biological activities, such as antibacterials, antitumorals and antifungals. Chilean marine ecosystems remain largely unexplored and may represent an important source for the discovery of bioactive compounds. Various culture conditions to enrich the growth of this phylum were used and 232 bacterial strains were isolated. Comparative analysis of the 16S rRNA gene sequences led to identifying genetic affiliations of 32 genera, belonging to 20 families. This study shows a remarkable culturable diversity of actinobacteria, associated to marine environments along Chile. Furthermore, 30 streptomycete strains were studied to establish their antibacterial activities against five model strains, Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa, demonstrating abilities to inhibit bacterial growth of Gram-positive bacteria. To gain insight into their metabolic profiles, crude extracts were submitted to liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis to assess the selection of streptomycete strains with potentials of producing novel bioactive metabolites. The combined approach allowed for the identification of three streptomycete strains to pursue further investigations. Our Chilean marine actinobacterial culture collection represents an important resource for the bioprospection of novel marine actinomycetes and its metabolites, evidencing their potential as producers of natural bioproducts.
Collapse
Affiliation(s)
- Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|
4
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|