1
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
3
|
Wang H, Guo Y, Liu Z, Chang Z. The Type VI Secretion System Contributes to the Invasiveness of Liver Abscess Caused by Klebsiella pneumoniae. J Infect Dis 2023; 228:1127-1136. [PMID: 37208895 DOI: 10.1093/infdis/jiad166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae liver abscess (KPLA) with extrahepatic migratory infections is defined as invasive KPLA (IKPLA). The type VI secretion system (T6SS) is involved in the pathogenesis of KPLA. We hypothesized that T6SS plays a role in IKPLA. METHODS 16S ribosomal RNA gene sequencing was performed on abscess samples. Polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) was used to validate the expression difference of T6SS hallmark genes. In vitro and in vivo experiments were performed to identify the pathogenic feature of T6SS. RESULTS PICRUSt2 predicted that the T6SS-related genes were notably enriched in the IKPLA group. PCR detection of T6SS hallmark genes (hcp, vgrG, and icmF) showed that 197 (81.1%) were T6SS-positive strains. The T6SS-positive strain detection rate in the IKPLA group was higher than in the KPLA group (97.1% vs 78.4%; P < .05). RT-PCR showed that the hcp expression level was markedly increased in IKPLA isolates (P < .05). The T6SS-positive isolates showed higher survival against serum and neutrophil killing (all P < .05). The T6SS-positive K pneumoniae-infected mice had a shorter survival time, higher mortality, and an increased interleukin 6 expression in the liver and lungs (all P < .05). CONCLUSIONS T6SS is an essential virulence factor for K pneumoniae and contributes to IKPLA.
Collapse
Affiliation(s)
- Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yawen Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Kharga K, Kumar L, Patel SKS. Recent Advances in Monoclonal Antibody-Based Approaches in the Management of Bacterial Sepsis. Biomedicines 2023; 11:biomedicines11030765. [PMID: 36979744 PMCID: PMC10045367 DOI: 10.3390/biomedicines11030765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by an uncontrolled inflammatory response to an infectious agent and its antigens. Immune cell activation against the antigens causes severe distress that mediates a strong inflammatory response in vital organs. Sepsis is responsible for a high rate of morbidity and mortality in immunosuppressed patients. Monoclonal antibody (mAb)-based therapeutic strategies are now being explored as a viable therapy option for severe sepsis and septic shock. Monoclonal antibodies may provide benefits through two major strategies: (a) monoclonal antibodies targeting the pathogen and its components, and (b) mAbs targeting inflammatory signaling may directly suppress the production of inflammatory mediators. The major focus of mAb therapies has been bacterial endotoxin (lipopolysaccharide), although other surface antigens are also being investigated for mAb therapy. Several promising candidates for mAbs are undergoing clinical trials at present. Despite several failures and the investigation of novel targets, mAb therapy provides a glimmer of hope for the treatment of severe bacterial sepsis and septic shock. In this review, mAb candidates, their efficacy against controlling infection, with special emphasis on potential roadblocks, and prospects are discussed.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
- Correspondence: (L.K.); (S.K.S.P.)
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (L.K.); (S.K.S.P.)
| |
Collapse
|
5
|
Zhang F, Meng Y, Xu L, Tian Y, Lu H, Xie J, Ma R, Li M, Li B. KbvR mutant of Klebsiella pneumoniae affects the synthesis of type 1 fimbriae and provides protection to mice as a live attenuated vaccine. Vet Res 2022; 53:97. [DOI: 10.1186/s13567-022-01116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractKlebsiella pneumoniae is a leading cause of severe infections in humans and animals, and the emergence of multidrug-resistant strains highlights the need to develop effective vaccines for preventing such infections. Live attenuated vaccines are attractive vaccine candidates available in the veterinary field. We recently characterized that the K. pneumoniae kbvR (Klebsiella biofilm and virulence regulator) mutant was a highly attenuated strain in the mice model. In the present study, the characterization, safety, and protective efficacy of ΔkbvR strain as a live attenuated vaccine were evaluated. The synthesis and activity of type 1 fimbriae were increased in the ΔkbvR strain. All mice inoculated by the subcutaneous route with 105, 106, and 107 colony-forming units (CFU) doses of the ΔkbvR strain survived. Subcutaneous immunization with two doses of 105 or 107 CFU ΔkbvR elicited a robust humoral immune response, and provided protection against the following K. pneumoniae intraperitoneal infection. The antisera of mice immunized with 105 CFU dose improved the opsonophagocytic ability and complement-mediated lysis not only to the same serotype strain but also to the different serotype strain. The passive transfer of antisera from 105 CFU dose-immunized mice provided protection against K. pneumoniae infection. Overall, our results suggest the great potential of the ΔkbvR strain as a novel vaccine candidate against K. pneumoniae infections in herds or humans.
Collapse
|
6
|
Han M, Chen Z, He P, Li Z, Chen Q, Tong Z, Wang M, Du H, Zhang H. YgiM may act as a trigger in the sepsis caused by Klebsiella pneumoniae through the membrane-associated ceRNA network. Front Genet 2022; 13:973145. [PMID: 36212144 PMCID: PMC9537587 DOI: 10.3389/fgene.2022.973145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Sepsis is one of the diseases that can cause serious mortality. In E. coli, an inner membrane protein YgiM encoded by gene ygiM can target the eukaryotic peroxisome. Peroxisome is a membrane-enclosed organelle associated with the ROS metabolism and was reported to play the key role in immune responses and inflammation during the development of sepsis. Klebsiella pneumoniae (K. pneumoniae) is one of the important pathogens causing sepsis. However, the function of gene vk055_4013 which is highly homologous to ygiM of E. coli has not been demonstrated in K. pneumoniae. In this study, we prepared ΔygiM of K. pneumoniae ATCC43816, and found that the deletion of ygiM did not affect bacterial growth and mouse mortality in the mouse infection model. Interestingly, ΔygiM not only resulted in reduced bacterial resistance to macrophages, but also attenuated pathological manifestations in mouse organs. Furthermore, based on the data of Gene Expression Omnibus, the expression profiles of micro RNAs (miRNAs) and messenger RNAs (mRNAs) in the serum of 44 sepsis patients caused by K. pneumoniae infection were analyzed, and 11 differently expressed miRNAs and 8 DEmRNAs associated with the membrane function were found. Finally, the membrane-associated competing endogenous RNAs (ceRNAs) network was constructed. In this ceRNAs network, DEmiRNAs (hsa-miR-7108-5p, hsa-miR-6780a-5p, hsa-miR-6756-5p, hsa-miR-4433b-3p, hsa-miR-3652, hsa-miR-342-3p, hsa-miR-32-5p) and their potential downstream target DEmRNAs (VNN1, CEACAM8, PGLYRP1) were verified in the cell model infected by wild type and ΔygiM of K. pneumoniae, respectively. Taken together, YgiM may trigger the sepsis caused by K. pneumoniae via membrane-associated ceRNAs. This study provided new insights into the role of YgiM in the process of K. pneumoniae induced sepsis.
Collapse
Affiliation(s)
- Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ping He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Clinical Laboratory, Sichuan Province Science City Hospital, Chengdu, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
High Osmotic Stress Increases OmpK36 Expression through the Regulation of KbvR to Decrease the Antimicrobial Resistance of Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0050722. [PMID: 35658577 PMCID: PMC9241633 DOI: 10.1128/spectrum.00507-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a pathogen known for its high frequency of antimicrobial resistance. Responses to various environmental stresses during its life can influence the resistance to antibiotics. Here, we demonstrate the role and mechanism of KbvR regulator in the response to environmental osmotic stress and in the effect of osmotic stress on antimicrobial resistance. The kbvR mutant strain exhibited increasing tolerance to high osmotic stress and certain antibiotics, including β-lactams. The expression levels of KbvR and outer membrane porin OmpK36 were upregulated in response to high osmotic stress in the wild type (WT), and the deletion of kbvR decreased the expression level of ompK36. The membrane permeability of the kbvR mutant strain was decreased, which was partly restored through the upregulated expression of OmpK36. The DNA affinity purification sequencing (DAP-seq) and microscale thermophoresis (MST) assay disclosed the binding of KbvR to the promoter of the ompK36 gene, indicating that KbvR directly and positively regulated the expression of OmpK36. The high osmotic stress increased the susceptibility to β-lactams and the expression of ompK36 in the WT strain. However, the increased ompK36 expression and the susceptibility to β-lactams in the kbvR mutant strain under high osmotic stress were lower than those of WT. In conclusion, our study has identified that high osmotic stress in the environment influenced the resistance of K. pneumoniae to antibiotics and that the regulation of KbvR with OmpR on the expression of OmpK36 was involved in countering high osmotic stress to change the antimicrobial resistance. IMPORTANCEKlebsiella pneumoniae is considered a global threat because of the rising prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. The sensing and adaption abilities of bacteria to the environmental osmotic stress can change the expression of their outer membrane porins, membrane permeability, and resistance to antibiotics. This study reports that KbvR is a newly found regulator that can be upregulated under high osmotic stress and directly regulate the expression of OmpK36 to change the resistance of K. pneumoniae to β-lactam antibiotics. The results demonstrate how adaptation to high osmotic stress changes the sensitivity of K. pneumoniae to antibiotics. The mechanism can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints in governing adaptation to diverse environmental challenges.
Collapse
|