1
|
Lu G, Shan S, Zainab B, Ayaz Z, He J, Xie Z, Rashid U, Zhang D, Mehmood Abbasi A. Novel vaccine design based on genomics data analysis: A review. Scand J Immunol 2021; 93:e12986. [PMID: 33043473 DOI: 10.1111/sji.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
Modification of pathogenic strains with the passage of time is responsible for evolution in the timeline of vaccine development for last 30 years. Recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. The aim of this review was to discuss the evolution of vaccines, their characteristics and limitations. In this review, we highlighted the evolution of vaccines, from first generation to the current status, pointing out how different vaccines have emerged and different approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. Data were collected using Google Scholar, Web of Science, Science Direct, Web of Knowledge, Scopus and Science Hub, whereas computational tools such as NCBI, GeneMANIA and STRING were used to analyse the pathways of vaccine action. Innovative tools, such as computational tools, recombinant technologies and intra-dermal devices, are currently being investigated in order to improve the immunological response. New technologies enlightened the interactions of host proteins with pathogenic proteins for vaccine candidate development, but still there is a need of integrating transcriptomic and proteomic approaches. Although immunization with genomics data is a successful approach, its advantages must be assessed case by case and its applicability depends on the nature of the agent to be immunized, the nature of the antigen and the type of immune response required to achieve effective protection.
Collapse
Affiliation(s)
- Guangli Lu
- Institute of Business, School of Business, Henan University, Henan, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou, China
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Bibi Zainab
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zainab Ayaz
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Zhenxing Xie
- Basic School of Medicine, Henan University, Kaifeng, China
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Dalin Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
2
|
Lavrenko A, Digtiar N, Gerasymenko N, Kaidashev I. A rare case of Bordetella avium pneumonia complicated by Raoultella planticola. Clin Case Rep 2020; 8:1039-1043. [PMID: 32577260 PMCID: PMC7303856 DOI: 10.1002/ccr3.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 11/11/2022] Open
Abstract
Bordetella avium pneumonia immunocompromised the patient with subsequent complication by a rare opportunistic Raoultella planticola infection, which became a nosocomial pathogen in the healthcare setting.
Collapse
Affiliation(s)
- Anna Lavrenko
- Internal Medicine Department No. 3 with PhthisiologyUkrainian Medical Stomatological AcademyPoltavaUkraine
| | - Nataliia Digtiar
- Internal Medicine Department No. 3 with PhthisiologyUkrainian Medical Stomatological AcademyPoltavaUkraine
| | - Nataliia Gerasymenko
- Internal Medicine Department No. 3 with PhthisiologyUkrainian Medical Stomatological AcademyPoltavaUkraine
| | - Igor Kaidashev
- Internal Medicine Department No. 3 with PhthisiologyUkrainian Medical Stomatological AcademyPoltavaUkraine
| |
Collapse
|
3
|
Knab R, Petersen H, Lin HJ, Meixner M, Rautenschlein S, Jung A. In vitro characterization and genetic diversity of Bordetella avium field strains. Avian Pathol 2019; 49:36-46. [PMID: 31456417 DOI: 10.1080/03079457.2019.1660305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bordetella avium (BA) is a respiratory pathogen of particular importance for turkeys. Specific adherence and damage to the respiratory epithelia are crucial steps of the pathogenesis, but knowledge about the mechanisms and the variety of virulence in field strains is limited. We analysed 17 BA field strains regarding their in vitro virulence-associated properties in tracheal organ cultures (TOC) of turkey embryos, and their genetic diversity. The TOC adherence assay indicated that BA field strains differ considerably in their ability to adhere to the tracheal mucosa, while the TOC ciliostasis assay illustrated a high degree of diversity in ciliostatic effects. These two virulence-associated properties were associated with each other in the investigated strains. Three of the investigated strains displayed significantly (P > 0.05) lower in vitro virulence in comparison to other strains. Genetic diversity of BA strains was analysed by core genome multilocus sequence typing (cgMLST). We applied a cgMLST scheme comprising 2667 targets of the reference genome (77.3% of complete genome, BA strain 197N). The results showed a broad genetic diversity in BA field strains but did not demonstrate a correlation between sequence type and virulence-associated properties. The cgMLST analysis revealed that strains with less marked virulence-associated properties had a variety of mutations in the putative filamentous haemagglutinin gene. Likewise, amino acid sequence alignment indicated variations in the protein. The results from our study showed that both adherence and ciliostasis assay can be used for virulence characterization of BA. Variations in the filamentous haemagglutinin protein may be responsible for reduced virulence of BA field strains.
Collapse
Affiliation(s)
- Rebecca Knab
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - Henning Petersen
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - Hsuen-Ju Lin
- Amedes Genetics, MVZ Endokrinologikum Berlin, Berlin, Germany
| | - Martin Meixner
- Amedes Genetics, MVZ Endokrinologikum Berlin, Berlin, Germany
| | | | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
4
|
Eldin WFS, Abd-El Samie LK, Darwish WS, Elewa YHA. Prevalence, virulence attributes, and antibiogram of Bordetella avium isolated from turkeys in Egypt. Trop Anim Health Prod 2019; 52:397-405. [PMID: 31376060 DOI: 10.1007/s11250-019-02027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/29/2022]
Abstract
Turkey coryza is a major respiratory disease caused by Bordetella avium (B. avium). It occurs in all ages of turkeys and is characterized by high morbidity and low mortality rates. The present study aimed firstly at determination of the prevalence rates of B. avium in turkeys reared in Egypt at different ages using various diagnostic methods including clinical examination, histopathology, enzyme-linked immunosorbent assay (ELISA), bacterial culture, and polymerase chain reaction (PCR). Using PCR, virulence-associated genes were detected in the confirmed B. avium isolates. Furthermore, the antibiotic resistance profiles of the confirmed B. avium isolates were examined. The achieved results indicated isolation and identification of B. avium infection at different ages of turkeys reared in Egypt. The overall PCR-confirmed prevalence rate of B. avium was 22.95%. The identified B. avium strains harbored virulence-associated genes responsible for colonization in the respiratory tract of turkeys including Bordetella virulence gene (100%), fimbriae (71.14%), and filamentous hemagglutinin (85.68%). The isolated B. avium strains showed multidrug resistance profiles. B. avium isolates were resistant to penicillin (92.82%), ceftiofur (85.68%), nalidixic acid (78.54%), and lincomycin (71.40%). The identified B. avium strains showed clear sensitivities to both gentamicin and neomycin, suggesting these as possible antimicrobial candidates for the control of B. avium infection in turkeys.
Collapse
Affiliation(s)
- Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Lammah K Abd-El Samie
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt. .,Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Yaser Hosny A Elewa
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Wang H, Shan S, Wang S, Zhang H, Ma L, Hu L, Huang H, Wei K, Zhu R. Fused IgY Fc and Polysaccharide Adjuvant Enhanced the Immune Effect of the Recombinant VP2 and VP5 Subunits-A Prospect for Improvement of Infectious Bursal Disease Virus Subunit Vaccine. Front Microbiol 2017; 8:2258. [PMID: 29184548 PMCID: PMC5694552 DOI: 10.3389/fmicb.2017.02258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a highly contagious pathogen that causes damage in lymphoid organs and remains a threat to the poultry industry worldwide. Currently, subunit vaccines based on VP2 antigen expressed in prokaryotic systems are widely used in clinical settings. However, the immunogenicity of VP2 vaccines is limited because of their inherent defect that the structure of the antigen expressed in Escherichia coli (E. coli) may be different from its natural conformation. In this study, we fused VP2 and VP5 protective antigen genes and linked the chicken IgY Fc gene onto it. The eukaryotic expression plasmid carrying the fusion gene was transformed into Pichia pastoris (P. pastoris) to express the recombinant VP2–VP5–Fc protein. The recombinant protein was used as immunogen for evaluating immune response, and the recombinant VP2–Fc and VP2 proteins expressed in P. pastoris and the commercial VP2 subunit vaccines were used as controls. Moreover, Taishan Pinus massoniana pollen polysaccharide (TPPPS), an immunomodulator found by our laboratory, was used as adjuvant to investigate its immune modulatory effects on immunogens. Chickens were divided into six groups and inoculated with VP2–VP5–Fc+TPPPS, VP2–VP5–Fc, VP2–Fc, VP2 vaccine, commercial VP2 subunit vaccine, and phosphate buffered saline (PBS). The recombinant VP2 subunit vaccine expressed in P. pastoris exhibited higher immunogenicity than the commercial VP2 subunit vaccine. The VP2–Fc protein showed a better effect than the VP2 protein, and the VP2–VP5–Fc subunit further improved the immune effects. In addition, TPPPS was proved to be a good immunopotentiator for the VP2–VP5–Fc subunit vaccine. Hence, the recombinant VP2–VP5–Fc subunit combined with TPPPS adjuvant exhibits potential as efficient IBDV vaccine to prevent infectious bursal disease.
Collapse
Affiliation(s)
- Huining Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Sufeng Shan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Shujuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hao Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Lili Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - He Huang
- New Hope Group, Shandong New Hope Liuhe Co. Ltd., Qingdao, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Stenzel T, Pestka D, Tykałowski B, Śmiałek M, Koncicki A, Bancerz-Kisiel A. Detection of Bordetella avium by TaqMan real-time PCR in tracheal swabs from wildlife birds. Pol J Vet Sci 2017; 20:31-36. [PMID: 28525340 DOI: 10.1515/pjvs-2017-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bordetella avium, the causing agent of bordetellosis, a highly contagious infection of the respiratory tract in young poultry, causes significant losses in poultry farming throughout the world. Wildlife birds can be a reservoir of various pathogens that infect farm animals. For this reason the studies were conducted to estimate the prevalence of Bordetella avium in wildlife birds in Poland. Tracheal swab samples were collected from 650 birds representing 27 species. The bacterial DNA was isolated directly from the swabs and screened for Bordetella avium by TaqMan real-time PCR. The assay specificity was evaluated by testing DNA isolated from 8 other bacteria that can be present in avian respiratory tract, and there was no amplification from non-Bordetella avium agents. Test sensitivity was determined by preparing standard tenfold serial dilutions of DNA isolated from positive control. The assay revealed to be sensitive, with detection limit of approximately 4.07x10^2 copies of Bordetella avium DNA. The genetic material of Bordetella avium was found in 54.54% of common pheasants, in 9.09% of Eurasian coots, in 3.22% of black-headed gulls and in 2.77% of mallard ducks. The results of this study point to low prevalence of Bordetella avium infections in wildlife birds. The results also show that described molecular assay proved to be suitable for the rapid diagnosis of bordetellosis in the routine diagnostic laboratory.
Collapse
|
7
|
Dong W, Zhang H, Huang H, Zhou J, Hu L, Lian A, Zhu L, Ma N, Yang P, Wei K, Zhu R. Chicken IgY Fc Linked to Bordetella avium ompA and Taishan Pinus massoniana Pollen Polysaccharide Adjuvant Enhances Macrophage Function and Specific Immune Responses. Front Microbiol 2016; 7:1708. [PMID: 27847501 PMCID: PMC5088198 DOI: 10.3389/fmicb.2016.01708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Fc-fusion technologies, in which immunoglobulin Fc is genetically fused to an antigenic protein, have been developed to confer antibody-like properties to proteins and peptides. Mammalian IgG Fc fusion exhibits improved antigen-induced immune responses by providing aggregates with high avidity for the IgG Fc receptor and salvaging the antigenic portion from endosomal degradation. However, whether the linked chicken IgY Fc fragment shares similar characteristics to mammalian IgG Fc remains unclear. In this study, we linked the chicken IgY Fc gene to the outer membrane protein A (ompA) of Bordetella avium through overlapping PCR. The fusion gene was cloned into the pPIC9 plasmid to construct the recombinant Pichia pastoris transformant expressing the ompA–Fc fusion protein. The effects of the linked Fc on macrophage vitality, activity, efficiency of antigen processing, and immune responses induced by the fused ompA were investigated. Furthermore, the effect of Taishan Pinus massoniana pollen polysaccharide (TPPPS), an immunomodulator, on chicken macrophage activation was evaluated. TPPPS was also used as an adjuvant to investigate its immunomodulatory effect on immunoresponses induced by the fused ompA–Fc in chickens. The pinocytosis, phagocytosis, secretion of nitric oxide and TNF-α, and MHC-II molecular expression of the macrophages treated with the fused ompA–Fc were significantly higher than those of the macrophages treated with ompA alone. The addition of TPPPS to the fused ompA–Fc further enhanced macrophage functions. The fused ompA–Fc elicited higher antigen-specific immune responses and protective efficacy compared with ompA alone. Moreover, the fused ompA–Fc conferred higher serum antibody titers, serum IL-2 and IL-4 concentrations, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and protection rate compared with ompA alone. Notably, the prepared TPPPS adjuvant ompA–Fc vaccines induced high immune responses and protection rate. The linked Fc and TPPPS adjuvant can remarkably enhance macrophage functions and specific immune responses. This study provides new perspectives to improve the immune effects of subunit vaccines for prevention of poultry diseases.
Collapse
Affiliation(s)
- Wenwen Dong
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Hao Zhang
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - He Huang
- Shandong New Hope Liuhe Co., Ltd, New Hope Group Qingdao, China
| | - Jianbo Zhou
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province Jinan, China
| | - Ailing Lian
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province Jinan, China
| | - Lijun Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Ningning Ma
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Pingping Yang
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Kai Wei
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Ruiliang Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| |
Collapse
|
8
|
Liu L, Yu C, Wang C, Shao M, Yan Z, Jiang X, Chi S, Wang Z, Wei K, Zhu R. Immuno-enhancement of Taishan Pinus massoniana pollen polysaccharides on recombinant Bordetella avium ompA expressed in Pichia pastoris. Microb Pathog 2016; 95:54-61. [PMID: 26975477 DOI: 10.1016/j.micpath.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/08/2016] [Indexed: 01/31/2023]
Abstract
Bordetellosis, caused by Bordetella avium, continues to be an economic problem in the poultry industry of China. Vaccines with good protective ability are lacking. Thus, developing a novel vaccine against the B. avium infection is crucial. Here, we constructed a recombinant Pichia pastoris transformant capable of expressing the outer membrane protein A (ompA) of B. avium to prepare the recombinant ompA subunit vaccine and then evaluated its immune effects. To further investigate the immunomodulation effects of Taishan Pinus massoniana pollen polysaccharides (TPPPS) on this subunit vaccine, three concentrations (20, 40, and 60 mg/mL) of TPPPS were used as the adjuvants of the ompA subunit vaccine respectively. The conventional Freund's incomplete adjuvant served as the control of TPPPS. Chickens in different groups were separately vaccinated with these vaccines thrice. During the monitoring period, serum antibody titers, concentrations of serum IL-4, percentages of CD4(+) and CD8(+) T-lymphocytes in the peripheral blood, lymphocyte transformation rate, and protection rate were detected. Results showed that the pure ompA vaccine induced the production of anti-ompA antibody, the secretion of IL-4, the increase of CD4(+) T-lymphocytes counts and lymphocyte transformation rate in the peripheral blood. Moreover, the pure ompA vaccine provided a protection rate of 71.67% after the B. avium challenge. Notably, TPPPS adjuvant vaccines induced higher levels of immune responses than the pure ompA vaccine, and 60 mg/mL TPPPS adjuvant vaccine showed optimal immune effects and had a 91.67% protection rate. Our findings indicated that this recombinant B. avium ompA subunit vaccine combined with TPPPS had high immunostimulatory potential. Results provided a new perspective for B. avium subunit vaccine research.
Collapse
Affiliation(s)
- Liping Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Cuilian Yu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chuanwen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxu Shao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhengui Yan
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiaodong Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shanshan Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Kai Wei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ruiliang Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
9
|
Zhu F, Liu X, Sun Z, Yu C, Liu L, Yang S, Li B, Wei K, Zhu R. Immune-Enhancing Effects of Taishan Pinus massoniana Pollen Polysaccharides on DNA Vaccine Expressing Bordetella avium ompA. Front Microbiol 2016; 7:66. [PMID: 26870023 PMCID: PMC4735580 DOI: 10.3389/fmicb.2016.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
Bordetella avium is the causative agent of bordetellosis, which remains to be the cause of severe losses in the turkey industry. Given the lack of vaccines that can provide good protection, developing a novel vaccine against B. avium infection is crucial. In this study, we constructed a eukaryotic expression plasmid, which expressed the outer membrane protein A (ompA) of B. avium, to prepare a B. avium recombinant ompA-DNA vaccine. Three concentrations (low, middle, and high) of Taishan Pinus massoniana pollen polysaccharides (TPPPS), a known immunomodulator, were used as adjuvants, and their immune conditioning effects on the developed DNA vaccine were examined. The pure ompA-DNA vaccine, Freund’s incomplete adjuvant ompA-DNA vaccine, and the empty plasmid served as the controls. The chickens in each group were separately inoculated with these vaccines three times at 1, 7, and 14 days old. Dynamic changes in antibody production, cytokine secretion, and lymphocyte count were then determined from 7 to 49 days after the first inoculation. Protective rates of the vaccines were also determined after the third inoculation. Results showed that the pure DNA vaccine obviously induced the production of antibodies, the secretion of cytokines, and the increase in CD4+ and CD8+ T lymphocyte counts in peripheral blood, as well as provided a protective rate of 50% to the B. avium-challenged chickens. The chickens inoculated with the TPPPS adjuvant ompA-DNA vaccine and Freund’s adjuvant ompA-DNA vaccine demonstrated higher levels of immune responses than those inoculated with pure ompA-DNA vaccine, whereas only the ompA-DNA vaccine with 200 mg/mL TPPPS completely protected the chickens against B. avium infection. These findings indicate that the B. avium ompA-DNA vaccine combined with TPPPS is a potentially effective B. avium vaccine.
Collapse
Affiliation(s)
- Fujie Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Xiao Liu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Zhenhong Sun
- Analytic Laboratory, Institute of Preclinical Medicine, Taishan Medical College Taian, China
| | - Cuilian Yu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Liping Liu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Shifa Yang
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Bing Li
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Kai Wei
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| | - Ruiliang Zhu
- Laboratory of Animal Biological Products, College of Animal Science and Technology, Shandong Agricultural University Taian, China
| |
Collapse
|
10
|
Zhao X, Liang M, Yang P, Guo F, Pan D, Huang X, Li Y, Wu C, Qu T, Zhu R. Taishan Pinus massoniana pollen polysaccharides promote immune responses of recombinant Bordetella avium ompA in BALB/c mice. Int Immunopharmacol 2013; 17:793-8. [DOI: 10.1016/j.intimp.2013.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023]
|
11
|
Bélanger M, Kozarov E, Song H, Whitlock J, Progulske-Fox A. Both the unique and repeat regions of the Porphyromonas gingivalis hemagglutin A are involved in adhesion and invasion of host cells. Anaerobe 2012; 18:128-34. [PMID: 22100486 PMCID: PMC3278541 DOI: 10.1016/j.anaerobe.2011.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/07/2011] [Accepted: 10/29/2011] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is one of the major etiologic agents of adult periodontitis and has been associated with cardiovascular diseases. It expresses multiple hemagglutinins that are significant virulence factors and play an important role in bacterial attachment and invasion of host cells. The objective of this study was to determine the impact of P. gingivalis hemagglutinin A (HagA) on the attachment to and invasion of human coronary artery endothelial cells (HCAEC) and gingival epithelial cells (GEC). Bacterial strains expressing the HagA protein (or subunits), including Escherichia coli carrying plasmid pEKS5, E. coli carrying plasmid ST2, and Salmonella enterica serovar Typhimurium with plasmid pNM1.1 were used in this study. The strains were tested for their ability to attach to and invade HCAEC and GEC using antibiotic protection assays. In addition, the unique 5' N-terminal non-repeated segment of HagA was purified in recombinant form and a monoclonal antibody was created against the polypeptide. The monoclonal antibody against the unique portion of HagA was tested for inhibitory activity in these assays. The attachment of both E. coli strains expressing HagA fragment to host cells was significantly increased compared to their respective controls. However, they did not invade GEC or HCAEC. Interestingly, HagA expression in the Salmonella strain increased both adherence to and invasion of HCAEC, which may be due to the presence of the entire hagA ORF. A monoclonal antibody against the unique 5' N-terminal portion of HagA reduced invasion. Further experiments are needed to determine the role of the unique and the repeat segments of P. gingivalis HagA.
Collapse
Affiliation(s)
- Myriam Bélanger
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Emil Kozarov
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Hong Song
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Joan Whitlock
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Ann Progulske-Fox
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| |
Collapse
|
12
|
Hébert L, Moumen B, Pons N, Duquesne F, Breuil MF, Goux D, Batto JM, Laugier C, Renault P, Petry S. Genomic characterization of the Taylorella genus. PLoS One 2012; 7:e29953. [PMID: 22235352 PMCID: PMC3250509 DOI: 10.1371/journal.pone.0029953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/07/2011] [Indexed: 01/21/2023] Open
Abstract
The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.
Collapse
Affiliation(s)
- Laurent Hébert
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| | - Bouziane Moumen
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Nicolas Pons
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Fabien Duquesne
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | | | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Basse-Normandie et IFR146 ICORE, Caen, France
| | - Jean-Michel Batto
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Claire Laugier
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Sandrine Petry
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| |
Collapse
|
13
|
The autotransporter protein from Bordetella avium, Baa1, is involved in host cell attachment. Microbiol Res 2011; 167:55-60. [PMID: 21632225 DOI: 10.1016/j.micres.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022]
Abstract
Bordetella avium is a Gram negative upper respiratory tract pathogen of birds. B. avium infection of commercially raised turkeys is an agriculturally significant problem. Here we describe the functional analysis of the first characterized B. avium autotransporter protein, Baa1. Autotransporters comprise a large family of proteins found in all groups of Gram negative bacteria. Although not unique to pathogenic bacteria, autotransporters have been shown to perform a variety of functions implicated in virulence. To test the hypothesis that Baa1 is a B. avium virulence factor, unmarked baa1 deletion mutants (Δbaa1) were created and tested phenotypically. It was found that baa1 mutants have wild-type levels of serum sensitivity and infectivity, yet significantly lower levels of turkey tracheal cell attachment in vitro. Likewise, semi-purified recombinant His-tagged Baa1, expressed in Escherichia coli, was shown to bind specifically to turkey tracheal cells via western blot analysis. Taken together, we conclude that Baa1 acts as a host cell attachment factor and thus plays a role B. avium virulence.
Collapse
|