1
|
Fukushima S, Shimohata T, Inoue Y, Kido J, Uebanso T, Mawatari K, Takahashi A. Recruitment of LC3 by Campylobacter jejuni to Bacterial Invasion Site on Host Cells via the Rac1-Mediated Signaling Pathway. Front Cell Infect Microbiol 2022; 12:829682. [PMID: 35310852 PMCID: PMC8927770 DOI: 10.3389/fcimb.2022.829682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni is a leading cause of food-borne disease worldwide. The pathogenicity of C. jejuni is closely associated with the internalization process in host epithelial cells, which is related to a host immune response. Autophagy indicates a key role in the innate immune system of the host to exclude invasive pathogens. Most bacteria are captured by autophagosomes and degraded by autophagosome-lysosome fusion in host cells. However, several pathogens, such as Salmonella and Shigella, avoid and/or escape autophagic degradation to establish infection. But autophagy involvement as a host immune response to C. jejuni infection has not been clarified. This study revealed autophagy association in C. jejuni infection. During infection, C. jejuni activated the Rho family small GTPase Rac1 signaling pathway, which modulates actin remodeling and promotes the internalization of this pathogen. In this study, we found the LC3 contribution to C. jejuni invasion signaling via the Rac1 signaling pathway. Interestingly, during C. jejuni invasion, LC3 was recruited to bacterial entry site depending on Rac1 GTPase activation just at the early step of the infection. C. jejuni infection induced LC3-II conversion, and autophagy induction facilitated C. jejuni internalization. Also, autophagy inhibition attenuated C. jejuni invasion step. Moreover, Rac1 recruited LC3 to the cellular membrane, activating the invasion of C. jejuni. Altogether, our findings provide insights into the new function of LC3 in bacterial invasion. We found the interaction between the Rho family small GTPase, Rac1, and autophagy-associated protein, LC3.
Collapse
Affiliation(s)
- Shiho Fukushima
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Faculty of Marine Biosciences, Fukui Prefectural University, Fukui, Japan
- *Correspondence: Takaaki Shimohata, ;
| | - Yuri Inoue
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Junko Kido
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
2
|
Dang H, Polineni D, Pace RG, Stonebraker JR, Corvol H, Cutting GR, Drumm ML, Strug LJ, O’Neal WK, Knowles MR. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLoS One 2020; 15:e0239189. [PMID: 33253230 PMCID: PMC7703903 DOI: 10.1371/journal.pone.0239189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.
Collapse
Affiliation(s)
- Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rhonda G. Pace
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Jaclyn R. Stonebraker
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux sde Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa J. Strug
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| |
Collapse
|