1
|
Falconer D, Phillippopoulos K, Czuchry D, Kocev A, Brockhausen I. Biosynthesis of Salmonella O43 and Escherichia coli O86 antigens: Comparison of α1,3-GalNAc-transferases WfbG and WbnH. Carbohydr Res 2025; 552:109434. [PMID: 40020433 DOI: 10.1016/j.carres.2025.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Antibiotic resistance is on the rise, making bacterial infections an increasing threat to human health. O-antigenic polysaccharides are important virulence factors of pathogenic Gram-negative bacteria that can be involved in immune evasion and colonization. The O antigens of enteropathogenic Salmonella enterica O43 (SO43) and Escherichia coli O86 (ECO86) are structurally similar and contain a mimic of the blood group B determinant. However, the SO43 O antigen repeating unit has GlcNAc at the reducing end while ECO86 contains a GalNAc residue. To explore this difference we characterized the α1,3-GalNAc-transferase responsible for the addition of GalNAc to GalNAc-PP-undecaprenol in ECO86 (WbnH) and the enzyme proposed to add GalNAc to GlcNAc-PP-undecaprenol in SO43 (WfbG). Substrate specificity study of these GT4 enzymes showed a strict donor specificity for UDP-GalNAc. However, WfbG could use either GlcNAcα- or GalNAcα-PP-phenylundecyl as a natural acceptor substrate analog whereas WbnH was only active with GalNAcα-PP-phenylundecyl. The GlcNAc-PP-undecaprenol 4-epimerase gene in the ECO86 strain can provide the essential acceptor substrate for WbnH. These data help to explain the difference in O antigen structures between SO43 and ECO86. A series of GT4 enzymes was analyzed by bioinformatics to identify common sequences that help to predict their functions. Characterization of these bacterial GTs can identify potential targets to disrupt virulence mechanisms.
Collapse
Affiliation(s)
- D Falconer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - K Phillippopoulos
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - D Czuchry
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - A Kocev
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada
| | - I Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada.
| |
Collapse
|
2
|
Manieri FZ, Moreira CG. Salmonella Typhimurium O-antigen and VisP play an important role in swarming and osmotic stress response during intracellular conditions. Braz J Microbiol 2022; 53:557-564. [PMID: 35303296 PMCID: PMC9151935 DOI: 10.1007/s42770-022-00701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella Typhimurium is a pathogen of clinical relevance and a model of study in host-pathogen interactions. The virulence and stress-related periplasmic protein VisP is important during S. Typhimurium pathogenesis. It supports bacteria invading host cells, surviving inside macrophages, swimming, and succeeding in murine colitis model, O-antigen assembly, and responding to cationic antimicrobial peptides. This study aimed to investigate the role of the O-antigen molecular ruler WzzST and the periplasmic protein VisP in swarming motility and osmotic stress response. Lambda red mutagenesis was performed to generate single and double mutants, followed by swarming motility, qRT-PCR, Western blot, and growth curves. Here we demonstrate that the deletion of visP affects swarming under osmotic stress and changes the expression levels of genes responsible for chemotaxis, flagella assembly, and general stress response. The deletion of the gene encoding for the O-antigen co-polymerase wzzST increases swarming motility but not under osmotic stress. A second mutation in O-antigen co-polymerase wzzST in a ΔvisP background affected gene expression levels. The ΔvisP growth was affected by sodium and magnesium levels on N-minimum media. These data indicate that WzzST has a role in swarming the motility of S. Typhimurium, as the VisP is involved in chemotaxis and osmotic stress, specifically in response to MgCl2 and NaCl.
Collapse
Affiliation(s)
- Fernanda Z Manieri
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara-Jau, km 1, s/n, Araraquara, São Paulo, 14800-903, Brazil
| | - Cristiano G Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara-Jau, km 1, s/n, Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|
3
|
Qian C, Huang M, Du Y, Song J, Mu H, Wei Y, Zhang S, Yin Z, Yuan C, Liu B, Liu B. Chemotaxis and Shorter O-Antigen Chain Length Contribute to the Strong Desiccation Tolerance of a Food-Isolated Cronobacter sakazakii Strain. Front Microbiol 2022; 12:779538. [PMID: 35058898 PMCID: PMC8764414 DOI: 10.3389/fmicb.2021.779538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen causing a lethality rate as high as 80% in infants. Desiccation tolerance ensures its survival in powdered infant formula (PIF) and contributes to the increased exposure to neonates, resulting in neonatal meningitis, septicemia, and necrotizing enterocolitis. This study showed that a food-isolated C. sakazakii G4023 strain exhibited a stronger desiccation tolerance than C. sakazakii ATCC 29544 strain. Considering the proven pathogenicity of G4023, it could be a big threat to infants. Transcriptome and proteome were performed to provide new insights into the desiccation adaptation mechanisms of G4023. Integrated analyses of these omics suggested that 331 genes were found regulated at both transcriptional and protein levels (≥2.0- and ≥1.5-fold, respectively). Deletion of chemotaxis system encoded genes cheA and cheW resulted in decreased tolerance in both short- and long-term desiccation. Reduced O-antigen chain length contributed to the biofilm formation and desiccation tolerance in the short term rather than the long term. In addition, biosynthesis of flagella, arginine and its transport system, and Fe/S cluster were also observed regulated in desiccated G4023. A better understanding of desiccation adaptation mechanisms of G4023 could in turn guide the operations during production and preservation of PIF or other food to reduce survival odds of G4023 and lower its exposure to get to infants.
Collapse
Affiliation(s)
- Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Si Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
4
|
Mylona E, Sanchez-Garrido J, Hoang Thu TN, Dongol S, Karkey A, Baker S, Shenoy AR, Frankel G. Very long O-antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cell Microbiol 2021; 23:e13306. [PMID: 33355403 PMCID: PMC8609438 DOI: 10.1111/cmi.13306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides.
Collapse
Affiliation(s)
- Elli Mylona
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Julia Sanchez-Garrido
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trang Nguyen Hoang Thu
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
5
|
Whitfield C, Williams DM, Kelly SD. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 2020; 295:10593-10609. [PMID: 32424042 DOI: 10.1074/jbc.rev120.009402] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Lipopolysaccharides are critical components of bacterial outer membranes. The more conserved lipid A part of the lipopolysaccharide molecule is a major element in the permeability barrier imposed by the outer membrane and offers a pathogen-associated molecular pattern recognized by innate immune systems. In contrast, the long-chain O-antigen polysaccharide (O-PS) shows remarkable structural diversity and fulfills a range of functions, depending on bacterial lifestyles. O-PS production is vital for the success of clinically important Gram-negative pathogens. The biological properties and functions of O-PSs are mostly independent of specific structures, but the size distribution of O-PS chains is particularly important in many contexts. Despite the vast O-PS chemical diversity, most are produced in bacterial cells by two assembly strategies, and the different mechanisms employed in these pathways to regulate chain-length distribution are emerging. Here, we review our current understanding of the mechanisms involved in regulating O-PS chain-length distribution and discuss their impact on microbial cell biology.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Karlinsey JE, Stepien TA, Mayho M, Singletary LA, Bingham-Ramos LK, Brehm MA, Greiner DL, Shultz LD, Gallagher LA, Bawn M, Kingsley RA, Libby SJ, Fang FC. Genome-wide Analysis of Salmonella enterica serovar Typhi in Humanized Mice Reveals Key Virulence Features. Cell Host Microbe 2019; 26:426-434.e6. [PMID: 31447308 DOI: 10.1016/j.chom.2019.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhi causes typhoid fever only in humans. Murine infection with S. Typhimurium is used as a typhoid model, but its relevance to human typhoid is limited. Non-obese diabetic-scid IL2rγnull mice engrafted with human hematopoietic stem cells (hu-SRC-SCID) are susceptible to lethal S. Typhi infection. In this study, we use a high-density S. Typhi transposon library in hu-SRC-SCID mice to identify virulence loci using transposon-directed insertion site sequencing (TraDIS). Vi capsule, lipopolysaccharide (LPS), and aromatic amino acid biosynthesis were essential for virulence, along with the siderophore salmochelin. However, in contrast to the murine S. Typhimurium model, neither the PhoPQ two-component system nor the SPI-2 pathogenicity island was required for lethal S. Typhi infection, nor was the CdtB typhoid toxin. These observations highlight major differences in the pathogenesis of typhoid and non-typhoidal Salmonella infections and demonstrate the utility of humanized mice for understanding the pathogenesis of a human-specific pathogen.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Taylor A Stepien
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dale L Greiner
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Larry A Gallagher
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich, UK; Earlham Institute, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, UK; School of Biological Science, University of East Anglia, Norwich, UK
| | - Stephen J Libby
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ferric C Fang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
QseC Signaling in the Outbreak O104:H4 Escherichia coli Strain Combines Multiple Factors during Infection. J Bacteriol 2019; 201:JB.00203-19. [PMID: 31235511 DOI: 10.1128/jb.00203-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.
Collapse
|