1
|
Pal S, Slepenkin A, Felgner J, Huw Davies D, Felgner P, de la Maza LM. Evaluation of Four Adjuvant Combinations, IVAX-1, IVAX-2, CpG-1826+Montanide ISA 720 VG and CpG-1018+Montanide ISA 720 VG, for Safety and for Their Ability to Elicit Protective Immune Responses in Mice against a Respiratory Challenge with Chlamydia muridarum. Pathogens 2023; 12:863. [PMID: 37513710 PMCID: PMC10383793 DOI: 10.3390/pathogens12070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
There is an urgent need to produce a vaccine for Chlamydia trachomatis infections. Here, using the Chlamydia muridarum major outer membrane protein (MOMP) as an antigen, four adjuvant combinations IVAX-1 (MPLA+CpG-1018+AddaVax), IVAX-2 (MPLA+CpG-1018+AS03), CpG-1826+Montanide ISA 720 VG (CpG-1826+Mont) and CpG-1018+Montanide ISA 720 VG (CpG-1018+Mont), were tested for their local reactogenicity and ability to elicit protection in BALB/c mice against a respiratory challenge with C. muridarum. Immunization with IVAX-1 or IVAX-2 induced no significant local reactogenicity following intramuscular immunization. In contrast, vaccines containing Montanide resulted in the formation of a local granuloma. Based on the IgG2a/IgG1 ratio in serum, the four adjuvant combinations elicited Th1-biased responses. IVAX-1 induced the highest in vitro neutralization titers while CpG-1018+Mont stimulated the lowest. As determined by the levels of IFN-γ produced by T-cells, the most robust cellular immune responses were elicited in mice immunized with CpG-1018+Mont, while the weakest responses were mounted by mice receiving IVAX-1. Following the respiratory challenge, mice immunized with CpG-1018+Mont lost the least amount of body weight and had the lowest number of C. muridarum inclusion-forming units (IFUs) in the lungs, while those receiving IVAX-2 had lost the most weight and had the highest number of IFUs in their lungs. Animals vaccinated with CpG-1826+Mont had the lightest lungs while those immunized using IVAX-2 had the heaviest. To conclude, due to their safety and adjuvanticity, IVAX formulations should be considered for inclusion in human vaccines against Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Fagerquist CK, Zaragoza WJ. Proteolytic Surface-Shaving and Serotype-Dependent Expression of SPI-1 Invasion Proteins in Salmonella enterica Subspecies enterica. Front Nutr 2018; 5:124. [PMID: 30619870 PMCID: PMC6295468 DOI: 10.3389/fnut.2018.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
We performed proteolytic surface-shaving with trypsin on three strains/sevovars of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson. Surfaced-exposed proteins of live bacterial cells were digested for 15 min. A separate 20 h re-digestion was also performed on the supernatant of each shaving experiment to more completely digest protein fragments into detectable peptides for proteomic analysis by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. Control samples (i.e., no trypsin during surface-shaving step) were also performed in parallel. We detected peptides of flagella proteins: FliC (filament), FliD (cap), and FlgL (hook-filament junction) as well as peptides of FlgM (anti-σ28 factor), i.e., the negative regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC, and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins were detected for SEE Kentucky (or its control) although sip genes were confirmed to be present. Our results may suggest a biological response (<15 min) to proteolysis of live cells for these SEE strains and, in the case of Newport and Thompson, a possible invasion response.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
3
|
Bakshi RK, Gupta K, Jordan SJ, Chi X, Lensing SY, Press CG, Geisler WM. An Adaptive Chlamydia trachomatis-Specific IFN-γ-Producing CD4 + T Cell Response Is Associated With Protection Against Chlamydia Reinfection in Women. Front Immunol 2018; 9:1981. [PMID: 30245688 PMCID: PMC6137090 DOI: 10.3389/fimmu.2018.01981] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Adaptive immune responses that mediate protection against Chlamydia trachomatis (CT) remain poorly defined in humans. Animal chlamydia models have demonstrated that CD4+ Th1 cytokine responses mediate protective immunity against reinfection. To better understand protective immunity to CT in humans, we investigated whether select CT-specific CD4+ Th1 and CD8+ T cell cytokine responses were associated with protection against CT reinfection in women. Methods: Peripheral blood mononuclear cells were collected from 135 CT-infected women at treatment and follow-up visits and stimulated with CT antigens. CD4+ and CD8+ T-cells expressing IFN-γ, TNF-α, and/or IL-2 were assessed using intracellular cytokine staining and cytokine responses were compared between visits and between women with vs. without CT reinfection at follow-up. Results: A CD4+TNF-α response was detected in the majority (77%) of study participants at the treatment visit, but a lower proportion had this response at follow-up (62%). CD4+ IFN-γ and CD4+ IL-2 responses occurred less frequently at the treatment visit (32 and 18%, respectively), but increased at follow-up (51 and 41%, respectively). CD8+ IFN-γ and CD8+ TNF-α responses were detected more often at follow-up (59% for both responses) compared to the treatment visit (30% for both responses). At follow-up, a CD4+IFN-γ response was detected more often in women without vs. with reinfection (60 vs. 33%, P = 0.005). Conclusions: Our findings suggest that a CT-specific CD4+ IFN-γ response is associated with protective immunity against CT reinfection and is thus an important component of adaptive immunity to CT in women.
Collapse
Affiliation(s)
- Rakesh K Bakshi
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kanupriya Gupta
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen J Jordan
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaofei Chi
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shelly Y Lensing
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christen G Press
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William M Geisler
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Grasse M, Rosenkrands I, Olsen A, Follmann F, Dietrich J. A flow cytometry-based assay to determine the phagocytic activity of both clinical and nonclinical antibody samples against Chlamydia trachomatis. Cytometry A 2018. [PMID: 29513398 PMCID: PMC6033180 DOI: 10.1002/cyto.a.23353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Globally, an estimated 131 million new cases of chlamydial infection occur annually. Chlamydia trachomatis infection can cause permanent damage to the fallopian tubes in woman, resulting in infertility and a risk of ectopic pregnancy. There is a great need for a vaccine against Chlamydia trachomatis and as a result there is a need for assays to evaluate functional immune responses for use in future clinical trials and epidemiological studies. Antibodies play a crucial role in the defense against infection and can be protective by several functions, including phagocytosis and neutralization. Vaccine development could greatly benefit from a method to measure functional C. trachomatis‐specific antibodies in a large number of samples. In the current in vitro antibody protection assays, which measure the capacity of antibodies to facilitate phagocytic uptake of C. trachomatis, the phagocytosed bacteria have to be counted manually. This is both labor demanding, time consuming, and it prevents high‐throughput usage of this method. In this study, we, therefore, developed a simple and rapid flow cytometry based assay to measure the capacity of antibodies to mediate Fc‐receptor dependent phagocytosis. This method is highly reproducible and suitable to analyze large numbers of clinical and nonclinical samples. © 2018 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Marco Grasse
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology, Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
5
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
6
|
Liang S, Bulir D, Kaushic C, Mahony J. Considerations for the rational design of a Chlamydia vaccine. Hum Vaccin Immunother 2016; 13:831-835. [PMID: 27835064 PMCID: PMC5404357 DOI: 10.1080/21645515.2016.1252886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Remarkable progress in vaccine research over the past six decades has led to the advancement of novel C. trachomatis vaccine candidates into clinical trials. However, many questions regarding the role of specific cellular populations and molecular mechanisms in protective immunity against human C. trachomatis genital tract infections remain unanswered. Biomarkers of vaccine induced protective immunity are elusive in humans, while a cautionary message on the translatability of data obtained from current animal models has emanated from vaccine research and development efforts against other important human pathogens. In this commentary, we highlight recent advances in Chlamydia vaccine development and discuss their implications in the context of a rational approach to the design of a human C. trachomatis vaccine.
Collapse
Affiliation(s)
- Steven Liang
- a Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada.,b St. Joseph's Research Institute , St. Joseph's Healthcare , Hamilton , Ontario , Canada
| | - David Bulir
- a Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada.,b St. Joseph's Research Institute , St. Joseph's Healthcare , Hamilton , Ontario , Canada
| | - Charu Kaushic
- a Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada.,c Department of Pathology and Molecular Medicine , McMaster University , Hamilton , Ontario , Canada
| | - James Mahony
- a Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , Ontario , Canada.,b St. Joseph's Research Institute , St. Joseph's Healthcare , Hamilton , Ontario , Canada.,c Department of Pathology and Molecular Medicine , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
7
|
Rey-Ladino J, Ross AGP, Cripps AW. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis. Hum Vaccin Immunother 2016; 10:2664-73. [PMID: 25483666 PMCID: PMC4977452 DOI: 10.4161/hv.29683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described.
Collapse
Affiliation(s)
- Jose Rey-Ladino
- a Department of Microbiology and Immunology; School of Medicine ; Alfaisal University ; Riyadh , Saudi Arabia
| | | | | |
Collapse
|
8
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
9
|
Resolution of Chlamydia trachomatis Infection Is Associated with a Distinct T Cell Response Profile. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1206-18. [PMID: 26446421 DOI: 10.1128/cvi.00247-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is the causative agent of the most frequently reported bacterial sexually transmitted infection, the total burden of which is underestimated due to the asymptomatic nature of the infection. Untreated C. trachomatis infections can cause significant morbidities, including pelvic inflammatory disease and tubal factor infertility (TFI). The human immune response against C. trachomatis, an obligate intracellular bacterium, is poorly characterized but is thought to rely on cell-mediated immunity, with CD4(+) and CD8(+) T cells implicated in protection. In this report, we present immune profiling data of subjects enrolled in a multicenter study of C. trachomatis genital infection. CD4(+) and CD8(+) T cells from subjects grouped into disease-specific cohorts were screened using a C. trachomatis proteomic library to identify the antigen specificities of recall T cell responses after natural exposure by measuring interferon gamma (IFN-γ) levels. We identified specific T cell responses associated with the resolution of infection, including unique antigens identified in subjects who spontaneously cleared infection and different antigens associated with C. trachomatis-related sequelae, such as TFI. These data suggest that novel and unique C. trachomatis T cell antigens identified in individuals with effective immune responses can be considered as targets for vaccine development, and by excluding antigens associated with deleterious sequelae, immune-mediated pathologies may be circumvented.
Collapse
|
10
|
A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ⁺ CMI responses protects against a genital infection in minipigs. Immunol Cell Biol 2015; 94:185-95. [PMID: 26268662 PMCID: PMC4748142 DOI: 10.1038/icb.2015.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023]
Abstract
Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia.
Collapse
|
11
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
12
|
Screening and Characterization of Linear B-Cell Epitopes by Biotinylated Peptide Libraries. Methods Mol Biol 2015; 1348:241-50. [PMID: 26424277 DOI: 10.1007/978-1-4939-2999-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identification of B-cell epitopes is important for the use of antibodies as therapeutic agents, the design of epitope-based vaccines against infectious diseases, and immunological assays based on peptide antibodies. A large number of methods are available for epitope mapping, but many of them require specialized laboratories and are expensive. In this chapter, we describe a high-throughput approach for epitope mapping of peptide antibodies by use of a library of soluble, overlapping, biotinylated peptides. As example, we present characterization of monoclonal and polyclonal antibodies specific for peptides of Mycobacterium tuberculosis acyl carrier protein AcpM and the Chlamydia trachomatis chaperone Ct043 by ELISA.
Collapse
|
13
|
Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine 2014; 32:685-92. [DOI: 10.1016/j.vaccine.2013.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
14
|
Horne AW, Horner PJ, Entrican G, Howie SEM. Elucidating the link betweenChlamydia trachomatisand ectopic pregnancy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.11.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Hafner LM, Wilson DP, Timms P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine 2013; 32:1563-71. [PMID: 23973245 DOI: 10.1016/j.vaccine.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/04/2013] [Accepted: 08/11/2013] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C. trachomatis vaccine is starting to look more likely.
Collapse
Affiliation(s)
- Louise M Hafner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David P Wilson
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
16
|
Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, Norais N, Laera D, Giusti F, Pierleoni A, Donati M, Cevenini R, Finco O, Grandi G, Grifantini R. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J Extracell Vesicles 2013; 2:20181. [PMID: 24009891 PMCID: PMC3760637 DOI: 10.3402/jev.v2i0.20181] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. METHODS Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. RESULTS CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. CONCLUSIONS When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.
Collapse
|
17
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 2013; 97:164-76. [PMID: 23624344 DOI: 10.1016/j.jprot.2013.03.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/25/2013] [Accepted: 03/24/2013] [Indexed: 12/11/2022]
Abstract
Surface proteins play a critical role in the interaction between cells and their environment, as they take part in processes like signaling, adhesion, transport, etc. In pathogenic microorganisms, they can also participate in virulence or cytotoxicity. As these proteins have the highest chances to be recognized by the immune system, they are often the targets for the discovery of new vaccines. In addition, they can serve for the development of serological-based tools to diagnose infectious diseases. First-generation proteomic strategies for the identification of surface proteins rely on the biochemical fractionation and/or enrichment of this group of molecules or organelles containing them. However, in the last years, a novel second-generation approach has been developed, consisting of the digestion of live, intact cells with proteases, so that surface-exposed moieties (i.e. the "surfome" of a cell) are "shaved" and analyzed by LC/MS/MS. Here we review such a strategy, firstly set up and developed in Gram-positive bacteria, and further applied to Gram-negative bacteria, unicellular fungi, and also pluricellular organisms. We also discuss the advantages and inconvenients of the approach, and the still unresolved question about the intriguing presence of proteins predicted as cytoplasmic in the surfomes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Lidia Gómez-Gascón
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
| |
Collapse
|
18
|
Lu C, Peng B, Li Z, Lei L, Li Z, Chen L, He Q, Zhong G, Wu Y. Induction of protective immunity against Chlamydia muridarum intravaginal infection with the chlamydial immunodominant antigen macrophage infectivity potentiator. Microbes Infect 2013; 15:329-38. [PMID: 23416214 DOI: 10.1016/j.micinf.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 12/21/2022]
Abstract
We previously reported that 5 Chlamydia muridarum antigens reacted with antisera from >90% mice urogenitally infected with C. muridarum and they are TC0660 (ABC transporter or ArtJ), TC0727 (outer membrane complex protein B or OmcB), TC0828 (macrophage infectivity potentiator or MIP), TC0726 (inclusion membrane protein or Inc) & TC0268 (hypothetical protein or HP). The orthologs of these antigens in Chlamydia trachomatis were also highly reactive with antisera from women urogenitally infected with C. trachomatis. In the current study, we evaluated these C. muridarum antigens for their ability to induce protection against a C. muridarum intravaginal challenge infection in mice. We found that only MIP induced the most pronounced protection against C. muridarum infection. The protection correlated well with robust C. muridarum MIP-specific antibody and Th1-dominant T cell responses. The MIP-immunized mice displayed significantly reduced live organism shedding from the lower genital tract and highly attenuated inflammatory pathologies in the upper genital tissues. These results demonstrate that MIP, an immunodominant antigen identified by both human and mouse antisera, may be considered a component of a multi-subunit chlamydial vaccine for inducing protective immunity.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Igietseme JU, Eko FO, Black CM. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations. Expert Rev Vaccines 2012; 10:1585-96. [PMID: 22043957 DOI: 10.1586/erv.11.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of delivery and possible toxicity.
Collapse
Affiliation(s)
- Joseph U Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MailStop G-36, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
20
|
Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci U S A 2011; 108:9969-74. [PMID: 21628568 DOI: 10.1073/pnas.1101756108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The aim is to review recent findings on immunity and vaccine development to Chlamydia trachomatis. RECENT FINDINGS There is increasing knowledge on the interactions between C. trachomatis and infected host cells. During genital infection the organism avoids generating protective immunity but immune responses to a number of chlamydial proteins have been associated with reproductive tract pathology. Various vaccine and adjuvant preparations have been tried experimentally. Information generated by proteomics and complex studies of serological and T-lymphocyte immune responses points to novel vaccine candidates. SUMMARY C. trachomatis, an obligate intracellular bacterium, is the commonest sexually transmitted infection worldwide and is associated with reproductive pathology. To develop rational vaccines it is necessary to understand the complex lifecycle of the organism, the host immune response to infection and how these relate to disease. Infection does not prevent re-infection and antibiotic treatment prevents antibody production at a population level. It remains unclear what type of immune response would be sufficient to prevent infection and/or re-infection. Although the prevalence and demographics of infection and the severity of disease associations suggest that it would be desirable, there is no vaccine currently available. A number of studies have identified novel vaccine candidates.
Collapse
|
22
|
Shaw JLV, Wills GS, Lee KF, Horner PJ, McClure MO, Abrahams VM, Wheelhouse N, Jabbour HN, Critchley HOD, Entrican G, Horne AW. Chlamydia trachomatis infection increases fallopian tube PROKR2 via TLR2 and NFκB activation resulting in a microenvironment predisposed to ectopic pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:253-60. [PMID: 21224062 PMCID: PMC3016599 DOI: 10.1016/j.ajpath.2010.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
Abstract
Chlamydia trachomatis and smoking are major risk factors for tubal ectopic pregnancy (EP), but the underlying mechanisms of these associations are not completely understood. Fallopian tube (FT) from women with EP exhibit altered expression of prokineticin receptors 1 and 2 (PROKR1 and PROKR2); smoking increases FT PROKR1, resulting in a microenvironment predisposed to EP. We hypothesize that C. trachomatis also predisposes to EP by altering FT PROKR expression and have investigated this by examining NFκB activation via ligation of the Toll-like receptor (TLR) family of cell-surface pattern recognition receptors. PROKR2 mRNA was higher in FT from women with evidence of past C. trachomatis infection than in those without (P < 0.05), and was also increased in FT explants and in oviductal epithelial cell line OE-E6/E7 infected with C. trachomatis (P < 0.01) or exposed to UV-killed organisms (P < 0.05). The ability of both live and dead organisms to induce this effect suggests ligation of a cell-surface-expressed receptor. FT epithelium and OE-E6/E7 were both found to express TLR2 and TLR4 by immunohistochemistry. Transfection of OE-E6/E7 cells with dominant-negative TLR2 or IκBα abrogated the C. trachomatis–induced PROKR2 expression. We propose that ligation of tubal TLR2 and activation of NFκB by C. trachomatis leads to increased tubal PROKR2, thereby predisposing the tubal microenvironment to ectopic implantation.
Collapse
Affiliation(s)
- Julie L V Shaw
- Centre for Reproductive Biology, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vaccination against Chlamydia genital infection utilizing the murine C. muridarum model. Infect Immun 2010; 79:986-96. [PMID: 21078844 DOI: 10.1128/iai.00881-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chlamydia trachomatis genital infection is a worldwide public health problem, and considerable effort has been expended on developing an efficacious vaccine. The murine model of C. muridarum genital infection has been extremely useful for identification of protective immune responses and in vaccine development. Although a number of immunogenic antigens have been assessed for their ability to induce protection, the majority of studies have utilized the whole organism, the major outer membrane protein (MOMP), or the chlamydial protease-like activity factor (CPAF). These antigens, alone and in combination with a variety of immunostimulatory adjuvants, have induced various levels of protection against infectious challenge, ranging from minimal to nearly sterilizing immunity. Understanding of the mechanisms of natural infection-based immunity and advances in adjuvant biology have resulted in studies that are increasingly successful, but a vaccine licensed for use in humans has not yet been brought to fruition. Here we review immunity to chlamydial genital infection and vaccine development using the C. muridarum model.
Collapse
|
24
|
Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect Immun 2010; 79:246-57. [PMID: 20956570 DOI: 10.1128/iai.00626-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chlamydia trachomatis infections can lead to severe chronic complications, including trachoma, ectopic pregnancy, and infertility. The only effective approach to disease control is vaccination. The goal of this work was to identify new potential vaccine candidates through a proteomics approach. We constructed a protein chip array (Antigen Discovery, Inc.) by expressing the open reading frames (ORFs) from C. trachomatis mouse pneumonitis (MoPn) genomic and plasmid DNA and tested it with serum samples from MoPn-immunized mice. Two groups of BALB/c female mice were immunized either intranasally or intravaginally with live elementary bodies (EB). Another two groups were immunized by a combination of the intramuscular and subcutaneous routes with UV-treated EB (UV-EB), using either CpG and Montanide as adjuvants to favor a Th1 response or alum to elicit a Th2 response. Serum samples collected at regular intervals postimmunization were tested in the proteome array. The microarray included the expression products of 909 proteins from a total of 921 ORFs of the Chlamydia MoPn genome and plasmid. A total of 185 immunodominant proteins elicited an early and sustained antibody response in the mice immunized with live EB, and of these, 71 were also recognized by the sera from mice immunized with UV-EB. The reactive antigens included some proteins that were previously described as immunogenic, such as the major outer membrane protein, OmpB, Hsp60, and IncA and proteins from the type III secretion system. In addition, we identified in mice several new immunogens, including 75 hypothetical proteins. In summary, we have identified a new group of immunodominant chlamydial proteins that can be tested for their ability to induce protection.
Collapse
|
25
|
Soriani M, Petit P, Grifantini R, Petracca R, Gancitano G, Frigimelica E, Nardelli F, Garcia C, Spinelli S, Scarabelli G, Fiorucci S, Affentranger R, Ferrer-Navarro M, Zacharias M, Colombo G, Vuillard L, Daura X, Grandi G. Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm. J Biol Chem 2010; 285:30126-38. [PMID: 20592031 PMCID: PMC2943275 DOI: 10.1074/jbc.m110.118513] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
We present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-β domains with the arginine-binding region at their interface. Although ArtJ is considered to belong to the periplasm, we found that both domains contain regions exposed on the bacterial surface. Moreover, we show that recombinant ArtJ binds to epithelial cells in vitro, suggesting a role for ArtJ in host-cell adhesion during Chlamydia infection. Experimental epitope mapping and computational analysis of physicochemical determinants of antibody recognition revealed that immunogenic epitopes reside mainly in the terminal (D1) domain of both CPn and CT ArtJ, whereas the surface properties of the respective binding-prone regions appear sufficiently different to assume divergent immunogenic behavior. Neutralization assays revealed that sera raised against CPn ArtJ D1 partially reduce both CPn and CT infectivity in vitro, suggesting that functional antibodies directed against this domain may potentially impair chlamydial infectivity. These findings suggest that the approach presented here, combining functional and structure-based analyses of evolutionary-related antigens can be a valuable tool for the identification of cross-species immunogenic epitopes for vaccine development.
Collapse
Affiliation(s)
- Marco Soriani
- From Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | - Silvia Spinelli
- AFMB, UMR 6098, CNRS-Universités Aix-Marseille I & II, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Guido Scarabelli
- the Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | | | - Roman Affentranger
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
| | - Mario Ferrer-Navarro
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
| | - Martin Zacharias
- the Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | - Giorgio Colombo
- the Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | | | - Xavier Daura
- the Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain, and
- the Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Guido Grandi
- From Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|