1
|
Prado-Costa B, Pinto LF, Fonseca MF, de Freitas D, Alvarenga LM. A Synthetic View on Acanthamoeba Keratitis Host Immune Response: Potential Factors Influencing the Development of Chronic Inflammation. Cornea 2025; 44:118-127. [PMID: 39627013 DOI: 10.1097/ico.0000000000003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 02/05/2025]
Abstract
PURPOSE The purpose of this study was to compile the current knowledge concerning Acanthamoeba keratitis (AK) host immune response to better understand the elements involved in the chronification of inflammation and worse disease outcomes. METHODS A scoping review of the literature on AK host immune response was written after a systematic literature search was performed on the PubMed, Latin American Caribbean Health Sciences Literature, Cochrane Library, Embase, Web of Science, and Scientific Electronic Library Online databases. Recovered articles were screened according to inclusion and exclusion criteria, and the selected studies were analyzed to compile the review. RESULTS The search strategy yielded a total of 768 articles from all searched databases. After the exclusion of duplicate records, 412 studies were screened according to inclusion and exclusion criteria. Finally, a total of 95 articles were selected to compile this review, of which 15 were included as additional bibliography. As for study type, 45 were experimental, 19 were observational, 23 were case reports, and 8 were reviews. CONCLUSIONS From the literature, both innate and adaptive immune systems seem to play an important role in AK control and resolution. On the other hand, there is also abundant evidence pointing out that the development of chronic and extracorneal inflammation is immune mediated and is influenced by several factors such as individual patient genetic variability, inadequate treatment, and Acanthamoeba strain pathogenicity.
Collapse
Affiliation(s)
- Bianca Prado-Costa
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| | - Larissa Fagundes Pinto
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana Fernandes Fonseca
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| | - Denise de Freitas
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil ; and
| |
Collapse
|
2
|
Ávila-Blanco ME, Aguilera-Martínez SL, Ventura-Juarez J, Pérez-Serrano J, Casillas-Casillas E, Barba-Gallardo LF. Effectiveness of Polyclonal Antibody Immunoconjugate Treatment with Propamidine Isethionate for Amoebic Keratitis in Golden Hamsters. J Parasitol Res 2023; 2023:3713368. [PMID: 37143958 PMCID: PMC10154091 DOI: 10.1155/2023/3713368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Acanthamoeba griffini is known to cause amoebic keratitis (AK); its main causes are inadequate hygiene when contact lenses are handled and/or its prolonged use at night, as well as the use of contact lenses during underwater activities. The most used treatment for AK is the combination of propamidine isethionate combined with polyhexamethylene biguanide, which disrupts the cytoplasmic membrane, and damages cellular components and respiratory enzymes. We proposed an immunoconjugate treatment obtained from Acanthamoeba immunized rabbit serum combined with propamidine isethionate; the corneas of hamsters inoculated with A. griffini (MYP2004) were treated with the combined, at 1, 2, and 3 weeks. Propamidine isethionate is frequently used for AK treatment, in vivo study we are found IL-1β and IL-10 expression and caspase 3 activity is significantly increased with respect to the group that was inoculated with the amoeba without receiving any treatment, suggesting that it may be an effect of the toxicity of this drug on the corneal tissue. Application of the immunoconjugate showed enhanced amoebicidal and anti-inflammatory activities, with comparison to propamidine isethionate only. The aim of this study is to evaluate the effect of the immunoconjugate of propamidine isethionate and polyclonal antibodies as a treatment of AK in golden hamsters (Mesocricetus auratus).
Collapse
|
3
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
4
|
Sarink MJ, van der Meijs NL, Denzer K, Koenderman L, Tielens AGM, van Hellemond JJ. Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 2021; 38:230-245. [PMID: 34758928 DOI: 10.1016/j.pt.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. can cause devastating brain infections in humans which almost always result in death. The symptoms of the three infections overlap, but brain inflammation and the course of the disease differ, depending on the amoeba that is responsible. Understanding the differences between these amoebae can result in the development of strategies to prevent and treat these infections. Recently, numerous scientific advancements have been made in the understanding of pathogenicity mechanisms in general, and the basic biology, epidemiology, and the human immune response towards these amoebae in particular. In this review, we combine this knowledge and aim to identify which factors can explain the differences between the lethal brain infections caused by N. fowleri, B. mandrillaris, and Acanthamoeba spp.
Collapse
Affiliation(s)
- Maarten J Sarink
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Nadia L van der Meijs
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kristin Denzer
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Jaap J van Hellemond
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Rodriguez-Anaya LZ, Félix-Sastré ÁJ, Lares-Villa F, Lares-Jiménez LF, Gonzalez-Galaviz JR. Application of the omics sciences to the study of Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris: current status and future projections. Parasite 2021; 28:36. [PMID: 33843581 PMCID: PMC8040595 DOI: 10.1051/parasite/2021033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, we focus on the sequenced genomes of the pathogens Naegleria fowleri, Acanthamoeba spp. and Balamuthia mandrillaris, and the remarkable discoveries regarding the pathogenicity and genetic information of these organisms, using techniques related to the various omics branches like genomics, transcriptomics, and proteomics. Currently, novel data produced through comparative genomics analyses and both differential gene and protein expression in these free-living amoebas have allowed for breakthroughs to identify genes unique to N. fowleri, genes with active transcriptional activity, and their differential expression in conditions of modified virulence. Furthermore, orthologous genes of the various nuclear genomes within the Naegleria and Acanthamoeba genera have been clustered. The proteome of B. mandrillaris has been reconstructed through transcriptome data, and its mitochondrial genome structure has been thoroughly described with a unique characteristic that has come to light: a type I intron with the capacity of interrupting genes through its self-splicing ribozymes activity. With the integration of data derived from the diverse omic sciences, there is a potential approximation that reflects the molecular complexity required for the identification of virulence factors, as well as crucial information regarding the comprehension of the molecular mechanisms with which these interact. Altogether, these breakthroughs could contribute to radical advances in both the fields of therapy design and medical diagnosis in the foreseeable future.
Collapse
Affiliation(s)
| | - Ángel Josué Félix-Sastré
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | | |
Collapse
|
6
|
Kot K, Kosik-Bogacka D, Wojtkowiak-Giera A, Kolasa-Wołosiuk A, Łanocha-Arendarczyk N. The expression of TLR2 and TLR4 in the kidneys and heart of mice infected with Acanthamoeba spp. Parasit Vectors 2020; 13:480. [PMID: 32958053 PMCID: PMC7507663 DOI: 10.1186/s13071-020-04351-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background Acanthamoeba spp. are cosmopolitan protozoans that cause infections in the brain, as well as extracerebral infections in the cornea, lungs and skin. Little is known about the mechanisms of the immunological response to these parasites in organs which are not their main biotope. Therefore, the purpose of this study was to determine the expression of TLR2 and TLR4 in the kidneys and heart of Acanthamoeba spp.-infected mice, with respect to the host’s immunological status. Methods The mice were grouped into four groups: immunocompetent control mice; immunosuppressed control mice; immunocompetent Acanthamoeba spp.-infected mice; and immunosuppressed Acanthamoeba spp. infected mice. In the study, we used the amoebae T16 genotype which was isolated from a patient. The TLRs expressions in the kidneys and heart of mice were assessed by quantitative real-time polymerase chain reaction. Moreover, we visualized TLR2 and TLR4 proteins in the organs by immunohistochemical staining. Results In the kidneys, we observed a higher TLR2 expression in immunosuppressed mice at 24 days post-Acanthamoeba spp. infection (dpi) compared to the uninfected mice. There were no statistically significant differences in TLR4 expression in the kidneys between the immunocompetent and immunosuppressed mice, both of infected and uninfected mice. In the heart, we observed a difference in TLR2 expression in immunocompetent mice at 24 dpi compared to immunocompetent mice at 8 dpi. The immunocompetent Acanthamoeba spp.-infected mice had higher TLR4 expression at 8 dpi compared to the immunocompetent uninfected mice. Conclusions Our results indicate that TLR2 is involved in response to Acanthamoeba spp. infection in the kidneys, whereas in the heart, both studied TLRs are involved.![]()
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Agnieszka Wojtkowiak-Giera
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10, 61-701, Poznan, Poland
| | - Agnieszka Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
7
|
Ávila-Blanco ME, Martín-Pérez T, Ventura-Juárez J, Pérez-Serrano J. Experimental keratitis in rats caused by Acanthamoeba griffini: A kinetic histopathological study. Parasite Immunol 2020; 42:e12692. [PMID: 31856305 DOI: 10.1111/pim.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the inflammation process that resulted from the inoculation of Wistar Rats with Acanthamoeba griffini, a virulent T3 Acanthamoeba genotype that produces keratitis. Haematoxylin and eosin, periodic acid stain, immunohistochemistry and morphometry were used to analyse tissues from rats of an Acanthamoeba keratitis (AK) model. Two weeks after inoculating the rats with A griffini trophozoites, the thickness of the stroma had diminished, followed by an increase in thickness at 4 weeks. At the latter time, an abundance of inflammatory infiltrate cells was observed, some found to express IL-1β, IL-10 and/or caspase 3. Intercellular adhesion molecule-1 was expressed in corneal blood vessels amid the abundant vascularization characteristic of the development of AK. Through an immunohistochemical technique, trophozoites were detected at 2 and 4 weeks post-inoculation. By 8 weeks, there were a low number of trophozoites and cysts and the corneas of infected rats were similar in thickness to those of the controls. Thus, the rats were capable of healing experimental AK in the present rat model. Diverse immunological mechanisms regulated the inflammatory process in acute AK induced by A griffini in a murine model.
Collapse
Affiliation(s)
- Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Javier Ventura-Juárez
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
8
|
Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors 2019; 12:467. [PMID: 31597577 PMCID: PMC6784334 DOI: 10.1186/s13071-019-3725-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. Methods Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. Results EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. Conclusions The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.
Collapse
|
9
|
Łanocha-Arendarczyk N, Kolasa-Wołosiuk A, Wojciechowska-Koszko I, Kot K, Roszkowska P, Krasnodębska-Szponder B, Paczkowska E, Machaliński B, Łuczkowska K, Wiszniewska B, Kosik-Bogacka D. Changes in the immune system in experimental acanthamoebiasis in immunocompetent and immunosuppressed hosts. Parasit Vectors 2018; 11:517. [PMID: 30236160 PMCID: PMC6149055 DOI: 10.1186/s13071-018-3108-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022] Open
Abstract
Background Acanthamoebiasis is most often found in patients with immune deficiency, with infections facilitated by the intake of immunosuppressive drugs. The host immune response to Acanthamoeba spp. infection is poorly understood. Thus, in this study, we aimed to examine the course of Acanthamoeba spp. infection taking into account the host’s immunological status, including assessment of the hematological parameters, cytokine analysis, immunophenotypic changes in spleen populations, and histological spleen changes, which could help clarify some aspects of the immune response to acanthamoebiasis. In our experimental study, we used Acanthamoeba strain AM 22 isolated from the bronchoaspirate of a patient with acute myeloid leukaemia (AML) and atypical pneumonia symptoms. Results Acanthamoeba spp. affected the hematological parameters in immunocompetent and immunosuppressed mice and induced a change in spleen weight during infection. Moreover, analysis of anti-inflammatory (IL-4 and IL-10) and pro-inflammatory (IL-17A and IFN-γ) cytokines produced by splenocytes stimulated with concanavalin A demonstrated that Acanthamoeba spp. induced a selective Th1, Th2 and Th17 response at later stages of the infection in immunocompetent hosts. In the case of hosts with low immunity, Acanthamoeba elicited robust Th1 cell-mediated immunity without the participation of Th17. We observed suppression of CD8+ and CD4+ T lymphocytes and CD3+CD4-CD8- double-negative (DN) T lymphocyte populations in the beginning, and in the case of CD3+/CD4+/CD8+ double-positive (DP) T cells in the final phase of Acanthamoeba spp. infection in hosts with low immunity. Also, CD4+T lymphocytes and CD3+/CD4+ and CD3+/CD8+ lymphocyte counts during each stage of acanthamoebiasis were shown to be upregulated. Conclusions We demonstrated that analysis of the immune response and pathogenesis mechanisms of clinical isolates of Acanthamoeba spp. in an animal model not only has purely cognitive significance but above all, may help in the development of effective methods of pharmacological therapy especially in patients with low immunity.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Agnieszka Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Paulina Roszkowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Barbara Krasnodębska-Szponder
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204, Szczecin, Poland.
| |
Collapse
|
10
|
Structural and functional studies of histidine biosynthesis in Acanthamoeba spp. demonstrates a novel molecular arrangement and target for antimicrobials. PLoS One 2018; 13:e0198827. [PMID: 29969448 PMCID: PMC6029752 DOI: 10.1371/journal.pone.0198827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/26/2018] [Indexed: 01/29/2023] Open
Abstract
Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba.
Collapse
|
11
|
Lares-Jiménez LF, Borquez-Román MA, Alfaro-Sifuentes R, Meza-Montenegro MM, Casillas-Hernández R, Lares-Villa F. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189:28-33. [PMID: 29673623 DOI: 10.1016/j.exppara.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The presence of free-living amoebae of the genera Naegleria, Acanthamoeba and Balamuthia, which contain pathogenic species for humans and animals, has been demonstrated several times and in different natural aquatic environments in the northwest of Mexico. With the aim of continuing the addition of knowledge about immunology of pathogenic free-living amoebae, 118 sera from children and adolescents, living in three villages, were studied. Humoral IgG response against B. mandrillaris, N. fowleri and Acanthamoeba sp. genotype T4, was analyzed in duplicate to titers 1: 100 and 1: 500 by enzyme-linked immunosorbent assay (ELISA). Children and adolescents ages ranged between 5 and 16 years old, with a mean of 9 years old, 55% males. All tested sera were positive for the 1: 100 dilution, and in the results obtained with the 1: 500 dilution, 116 of 118 (98.3%) were seropositive for N. fowleri, 101 of 118 (85.6%) were seropositive for Acanthamoeba sp. genotype T4, and 43 of 118 (36.4%) were seropositive for B. mandrillaris. The statistical analysis showed different distributions among the three communities and for the three species of pathogenic free-living amoebae, including age. Lysed and complete cells used as Balamuthia antigens gave differences in seropositivity.
Collapse
Affiliation(s)
- Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Rosalía Alfaro-Sifuentes
- Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Ramón Casillas-Hernández
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| |
Collapse
|
12
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
13
|
Casero RD, Mongi F, Laconte L, Rivero F, Sastre D, Teherán A, Herrera G, Ramírez JD. Molecular and morphological characterization of Acanthamoeba isolated from corneal scrapes and contact lens wearers in Argentina. INFECTION GENETICS AND EVOLUTION 2017; 54:170-175. [DOI: 10.1016/j.meegid.2017.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022]
|
14
|
Characterisation of sterol biosynthesis and validation of 14α-demethylase as a drug target in Acanthamoeba. Sci Rep 2017; 7:8247. [PMID: 28811501 PMCID: PMC5557935 DOI: 10.1038/s41598-017-07495-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022] Open
Abstract
The soil amoebae Acanthamoeba causes Acanthamoeba keratitis, a severe sight-threatening infection of the eye and the almost universally fatal granulomatous amoebic encephalitis. More effective treatments are required. Sterol biosynthesis has been effectively targeted in numerous fungi using azole compounds that inhibit the cytochrome P450 enzyme sterol 14α-demethylase. Herein, using Gas Chromatography Mass Spectrometry (GCMS), we demonstrate that the major sterol of Acanthamoeba castellanii is ergosterol and identify novel putative precursors and intermediate sterols in its production. Unlike previously reported, we find no evidence of 7-dehydrostigmasterol or any other phytosterol in Acanthamoeba. Of five azoles tested, we demonstrate that tioconazole and voriconazole have the greatest overall inhibition for all isolates of Acanthamoeba castellanii and Acanthamoeba polyphaga tested. While miconazole and sulconazole have intermediate activity econazole is least effective. Through GCMS, we demonstrate that voriconazole inhibits 14α-demethylase as treatment inhibits the production of ergosterol, but results in the accumulation of the lanosterol substrate. These data provide the most complete description of sterol metabolism in Acanthamoeba, provide a putative framework for their further study and validate 14α-demethylase as the target for azoles in Acanthamoeba.
Collapse
|
15
|
The leukocyte-associated immunoglobulin (Ig)–like receptor-1 modulating cell apoptosis and inflammatory cytokines secretion in THP-1 cells after Helicobacter pylori infection. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Acanthamoeba Activates Macrophages Predominantly through Toll-Like Receptor 4- and MyD88-Dependent Mechanisms To Induce Interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85:IAI.01054-16. [PMID: 28348053 DOI: 10.1128/iai.01054-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acanthamoeba castellanii is a ubiquitous free-living amoeba with a worldwide distribution that can occasionally infect humans, causing particularly severe infections in immunocompromised individuals. Dissecting the immunology of Acanthamoeba infections has been considered problematic due to the very low incidence of disease, despite the high exposure rates. While macrophages are acknowledged as playing a significant role in Acanthamoeba infections, little is known about how this facultative parasite influences macrophage activity. Therefore, in this study we investigated the effects of Acanthamoeba on the activation of resting macrophages. Consequently, murine bone marrow-derived macrophages were cocultured with trophozoites of either the laboratory Neff strain or a clinical isolate of A. castellaniiIn vitro real-time imaging demonstrated that trophozoites of both strains often established evanescent contact with macrophages. Both Acanthamoeba strains induced a proinflammatory macrophage phenotype characterized by the significant production of interleukin-12 (IL-12) and IL-6. However, macrophages cocultured with the clinical isolate of Acanthamoeba produced significantly less IL-12 and IL-6 than the Neff strain. The utilization of macrophages derived from MyD88-, TRIF-, Toll-like receptor 2 (TLR2)-, TLR4-, and TLR2/4-deficient mice indicated that Acanthamoeba-induced proinflammatory cytokine production was through MyD88-dependent, TRIF-independent, TLR4-induced events. This study shows for the first time the involvement of TLRs expressed on macrophages in the recognition of and response to Acanthamoeba trophozoites.
Collapse
|
17
|
Waterer G, Restrepo MI. Maladaptive Suppression of Bacterial Clearance in Early Sepsis. Setting the Scene for Failure. Am J Respir Crit Care Med 2017; 195:846-847. [DOI: 10.1164/rccm.201610-1975ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Grant Waterer
- University of Western AustraliaPerth, Western Australia, Australia
- Northwestern UniversityChicago, Illinois
| | - Marcos I. Restrepo
- Department of MedicineSouth Texas Veterans Health Care SystemSan Antonio, Texasand
- University of Texas Health Science Center at San AntonioSan Antonio, Texas
| |
Collapse
|